/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "version.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "AL/efx.h" #include "al/auxeffectslot.h" #include "al/effect.h" #include "al/event.h" #include "al/filter.h" #include "al/listener.h" #include "al/source.h" #include "alcmain.h" #include "albyte.h" #include "alconfig.h" #include "alcontext.h" #include "alexcpt.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "alstring.h" #include "alu.h" #include "ambidefs.h" #include "atomic.h" #include "bformatdec.h" #include "bs2b.h" #include "compat.h" #include "cpu_caps.h" #include "devformat.h" #include "effects/base.h" #include "filters/nfc.h" #include "filters/splitter.h" #include "fpu_modes.h" #include "hrtf.h" #include "inprogext.h" #include "intrusive_ptr.h" #include "logging.h" #include "mastering.h" #include "opthelpers.h" #include "pragmadefs.h" #include "ringbuffer.h" #include "strutils.h" #include "threads.h" #include "uhjfilter.h" #include "vecmat.h" #include "vector.h" #include "backends/base.h" #include "backends/null.h" #include "backends/loopback.h" #ifdef HAVE_JACK #include "backends/jack.h" #endif #ifdef HAVE_PULSEAUDIO #include "backends/pulseaudio.h" #endif #ifdef HAVE_ALSA #include "backends/alsa.h" #endif #ifdef HAVE_WASAPI #include "backends/wasapi.h" #endif #ifdef HAVE_COREAUDIO #include "backends/coreaudio.h" #endif #ifdef HAVE_OPENSL #include "backends/opensl.h" #endif #ifdef HAVE_SOLARIS #include "backends/solaris.h" #endif #ifdef HAVE_SNDIO #include "backends/sndio.h" #endif #ifdef HAVE_OSS #include "backends/oss.h" #endif #ifdef HAVE_QSA #include "backends/qsa.h" #endif #ifdef HAVE_DSOUND #include "backends/dsound.h" #endif #ifdef HAVE_WINMM #include "backends/winmm.h" #endif #ifdef HAVE_PORTAUDIO #include "backends/portaudio.h" #endif #ifdef HAVE_SDL2 #include "backends/sdl2.h" #endif #ifdef HAVE_WAVE #include "backends/wave.h" #endif namespace { using namespace std::placeholders; using std::chrono::seconds; using std::chrono::nanoseconds; /************************************************ * Backends ************************************************/ struct BackendInfo { const char *name; BackendFactory& (*getFactory)(void); }; BackendInfo BackendList[] = { #ifdef HAVE_JACK { "jack", JackBackendFactory::getFactory }, #endif #ifdef HAVE_PULSEAUDIO { "pulse", PulseBackendFactory::getFactory }, #endif #ifdef HAVE_ALSA { "alsa", AlsaBackendFactory::getFactory }, #endif #ifdef HAVE_WASAPI { "wasapi", WasapiBackendFactory::getFactory }, #endif #ifdef HAVE_COREAUDIO { "core", CoreAudioBackendFactory::getFactory }, #endif #ifdef HAVE_OPENSL { "opensl", OSLBackendFactory::getFactory }, #endif #ifdef HAVE_SOLARIS { "solaris", SolarisBackendFactory::getFactory }, #endif #ifdef HAVE_SNDIO { "sndio", SndIOBackendFactory::getFactory }, #endif #ifdef HAVE_OSS { "oss", OSSBackendFactory::getFactory }, #endif #ifdef HAVE_QSA { "qsa", QSABackendFactory::getFactory }, #endif #ifdef HAVE_DSOUND { "dsound", DSoundBackendFactory::getFactory }, #endif #ifdef HAVE_WINMM { "winmm", WinMMBackendFactory::getFactory }, #endif #ifdef HAVE_PORTAUDIO { "port", PortBackendFactory::getFactory }, #endif #ifdef HAVE_SDL2 { "sdl2", SDL2BackendFactory::getFactory }, #endif { "null", NullBackendFactory::getFactory }, #ifdef HAVE_WAVE { "wave", WaveBackendFactory::getFactory }, #endif }; auto BackendListEnd = std::end(BackendList); BackendFactory *PlaybackFactory{}; BackendFactory *CaptureFactory{}; /************************************************ * Functions, enums, and errors ************************************************/ #define DECL(x) { #x, reinterpret_cast(x) } const struct { const ALCchar *funcName; ALCvoid *address; } alcFunctions[] = { DECL(alcCreateContext), DECL(alcMakeContextCurrent), DECL(alcProcessContext), DECL(alcSuspendContext), DECL(alcDestroyContext), DECL(alcGetCurrentContext), DECL(alcGetContextsDevice), DECL(alcOpenDevice), DECL(alcCloseDevice), DECL(alcGetError), DECL(alcIsExtensionPresent), DECL(alcGetProcAddress), DECL(alcGetEnumValue), DECL(alcGetString), DECL(alcGetIntegerv), DECL(alcCaptureOpenDevice), DECL(alcCaptureCloseDevice), DECL(alcCaptureStart), DECL(alcCaptureStop), DECL(alcCaptureSamples), DECL(alcSetThreadContext), DECL(alcGetThreadContext), DECL(alcLoopbackOpenDeviceSOFT), DECL(alcIsRenderFormatSupportedSOFT), DECL(alcRenderSamplesSOFT), DECL(alcDevicePauseSOFT), DECL(alcDeviceResumeSOFT), DECL(alcGetStringiSOFT), DECL(alcResetDeviceSOFT), DECL(alcGetInteger64vSOFT), DECL(alEnable), DECL(alDisable), DECL(alIsEnabled), DECL(alGetString), DECL(alGetBooleanv), DECL(alGetIntegerv), DECL(alGetFloatv), DECL(alGetDoublev), DECL(alGetBoolean), DECL(alGetInteger), DECL(alGetFloat), DECL(alGetDouble), DECL(alGetError), DECL(alIsExtensionPresent), DECL(alGetProcAddress), DECL(alGetEnumValue), DECL(alListenerf), DECL(alListener3f), DECL(alListenerfv), DECL(alListeneri), DECL(alListener3i), DECL(alListeneriv), DECL(alGetListenerf), DECL(alGetListener3f), DECL(alGetListenerfv), DECL(alGetListeneri), DECL(alGetListener3i), DECL(alGetListeneriv), DECL(alGenSources), DECL(alDeleteSources), DECL(alIsSource), DECL(alSourcef), DECL(alSource3f), DECL(alSourcefv), DECL(alSourcei), DECL(alSource3i), DECL(alSourceiv), DECL(alGetSourcef), DECL(alGetSource3f), DECL(alGetSourcefv), DECL(alGetSourcei), DECL(alGetSource3i), DECL(alGetSourceiv), DECL(alSourcePlayv), DECL(alSourceStopv), DECL(alSourceRewindv), DECL(alSourcePausev), DECL(alSourcePlay), DECL(alSourceStop), DECL(alSourceRewind), DECL(alSourcePause), DECL(alSourceQueueBuffers), DECL(alSourceUnqueueBuffers), DECL(alGenBuffers), DECL(alDeleteBuffers), DECL(alIsBuffer), DECL(alBufferData), DECL(alBufferf), DECL(alBuffer3f), DECL(alBufferfv), DECL(alBufferi), DECL(alBuffer3i), DECL(alBufferiv), DECL(alGetBufferf), DECL(alGetBuffer3f), DECL(alGetBufferfv), DECL(alGetBufferi), DECL(alGetBuffer3i), DECL(alGetBufferiv), DECL(alDopplerFactor), DECL(alDopplerVelocity), DECL(alSpeedOfSound), DECL(alDistanceModel), DECL(alGenFilters), DECL(alDeleteFilters), DECL(alIsFilter), DECL(alFilteri), DECL(alFilteriv), DECL(alFilterf), DECL(alFilterfv), DECL(alGetFilteri), DECL(alGetFilteriv), DECL(alGetFilterf), DECL(alGetFilterfv), DECL(alGenEffects), DECL(alDeleteEffects), DECL(alIsEffect), DECL(alEffecti), DECL(alEffectiv), DECL(alEffectf), DECL(alEffectfv), DECL(alGetEffecti), DECL(alGetEffectiv), DECL(alGetEffectf), DECL(alGetEffectfv), DECL(alGenAuxiliaryEffectSlots), DECL(alDeleteAuxiliaryEffectSlots), DECL(alIsAuxiliaryEffectSlot), DECL(alAuxiliaryEffectSloti), DECL(alAuxiliaryEffectSlotiv), DECL(alAuxiliaryEffectSlotf), DECL(alAuxiliaryEffectSlotfv), DECL(alGetAuxiliaryEffectSloti), DECL(alGetAuxiliaryEffectSlotiv), DECL(alGetAuxiliaryEffectSlotf), DECL(alGetAuxiliaryEffectSlotfv), DECL(alDeferUpdatesSOFT), DECL(alProcessUpdatesSOFT), DECL(alSourcedSOFT), DECL(alSource3dSOFT), DECL(alSourcedvSOFT), DECL(alGetSourcedSOFT), DECL(alGetSource3dSOFT), DECL(alGetSourcedvSOFT), DECL(alSourcei64SOFT), DECL(alSource3i64SOFT), DECL(alSourcei64vSOFT), DECL(alGetSourcei64SOFT), DECL(alGetSource3i64SOFT), DECL(alGetSourcei64vSOFT), DECL(alGetStringiSOFT), DECL(alBufferStorageSOFT), DECL(alMapBufferSOFT), DECL(alUnmapBufferSOFT), DECL(alFlushMappedBufferSOFT), DECL(alEventControlSOFT), DECL(alEventCallbackSOFT), DECL(alGetPointerSOFT), DECL(alGetPointervSOFT), }; #undef DECL #define DECL(x) { #x, (x) } constexpr struct { const ALCchar *enumName; ALCenum value; } alcEnumerations[] = { DECL(ALC_INVALID), DECL(ALC_FALSE), DECL(ALC_TRUE), DECL(ALC_MAJOR_VERSION), DECL(ALC_MINOR_VERSION), DECL(ALC_ATTRIBUTES_SIZE), DECL(ALC_ALL_ATTRIBUTES), DECL(ALC_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_DEVICE_SPECIFIER), DECL(ALC_ALL_DEVICES_SPECIFIER), DECL(ALC_DEFAULT_ALL_DEVICES_SPECIFIER), DECL(ALC_EXTENSIONS), DECL(ALC_FREQUENCY), DECL(ALC_REFRESH), DECL(ALC_SYNC), DECL(ALC_MONO_SOURCES), DECL(ALC_STEREO_SOURCES), DECL(ALC_CAPTURE_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_SAMPLES), DECL(ALC_CONNECTED), DECL(ALC_EFX_MAJOR_VERSION), DECL(ALC_EFX_MINOR_VERSION), DECL(ALC_MAX_AUXILIARY_SENDS), DECL(ALC_FORMAT_CHANNELS_SOFT), DECL(ALC_FORMAT_TYPE_SOFT), DECL(ALC_MONO_SOFT), DECL(ALC_STEREO_SOFT), DECL(ALC_QUAD_SOFT), DECL(ALC_5POINT1_SOFT), DECL(ALC_6POINT1_SOFT), DECL(ALC_7POINT1_SOFT), DECL(ALC_BFORMAT3D_SOFT), DECL(ALC_BYTE_SOFT), DECL(ALC_UNSIGNED_BYTE_SOFT), DECL(ALC_SHORT_SOFT), DECL(ALC_UNSIGNED_SHORT_SOFT), DECL(ALC_INT_SOFT), DECL(ALC_UNSIGNED_INT_SOFT), DECL(ALC_FLOAT_SOFT), DECL(ALC_HRTF_SOFT), DECL(ALC_DONT_CARE_SOFT), DECL(ALC_HRTF_STATUS_SOFT), DECL(ALC_HRTF_DISABLED_SOFT), DECL(ALC_HRTF_ENABLED_SOFT), DECL(ALC_HRTF_DENIED_SOFT), DECL(ALC_HRTF_REQUIRED_SOFT), DECL(ALC_HRTF_HEADPHONES_DETECTED_SOFT), DECL(ALC_HRTF_UNSUPPORTED_FORMAT_SOFT), DECL(ALC_NUM_HRTF_SPECIFIERS_SOFT), DECL(ALC_HRTF_SPECIFIER_SOFT), DECL(ALC_HRTF_ID_SOFT), DECL(ALC_AMBISONIC_LAYOUT_SOFT), DECL(ALC_AMBISONIC_SCALING_SOFT), DECL(ALC_AMBISONIC_ORDER_SOFT), DECL(ALC_ACN_SOFT), DECL(ALC_FUMA_SOFT), DECL(ALC_N3D_SOFT), DECL(ALC_SN3D_SOFT), DECL(ALC_OUTPUT_LIMITER_SOFT), DECL(ALC_NO_ERROR), DECL(ALC_INVALID_DEVICE), DECL(ALC_INVALID_CONTEXT), DECL(ALC_INVALID_ENUM), DECL(ALC_INVALID_VALUE), DECL(ALC_OUT_OF_MEMORY), DECL(AL_INVALID), DECL(AL_NONE), DECL(AL_FALSE), DECL(AL_TRUE), DECL(AL_SOURCE_RELATIVE), DECL(AL_CONE_INNER_ANGLE), DECL(AL_CONE_OUTER_ANGLE), DECL(AL_PITCH), DECL(AL_POSITION), DECL(AL_DIRECTION), DECL(AL_VELOCITY), DECL(AL_LOOPING), DECL(AL_BUFFER), DECL(AL_GAIN), DECL(AL_MIN_GAIN), DECL(AL_MAX_GAIN), DECL(AL_ORIENTATION), DECL(AL_REFERENCE_DISTANCE), DECL(AL_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAIN), DECL(AL_MAX_DISTANCE), DECL(AL_SEC_OFFSET), DECL(AL_SAMPLE_OFFSET), DECL(AL_BYTE_OFFSET), DECL(AL_SOURCE_TYPE), DECL(AL_STATIC), DECL(AL_STREAMING), DECL(AL_UNDETERMINED), DECL(AL_METERS_PER_UNIT), DECL(AL_LOOP_POINTS_SOFT), DECL(AL_DIRECT_CHANNELS_SOFT), DECL(AL_DIRECT_FILTER), DECL(AL_AUXILIARY_SEND_FILTER), DECL(AL_AIR_ABSORPTION_FACTOR), DECL(AL_ROOM_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAINHF), DECL(AL_DIRECT_FILTER_GAINHF_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAIN_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAINHF_AUTO), DECL(AL_SOURCE_STATE), DECL(AL_INITIAL), DECL(AL_PLAYING), DECL(AL_PAUSED), DECL(AL_STOPPED), DECL(AL_BUFFERS_QUEUED), DECL(AL_BUFFERS_PROCESSED), DECL(AL_FORMAT_MONO8), DECL(AL_FORMAT_MONO16), DECL(AL_FORMAT_MONO_FLOAT32), DECL(AL_FORMAT_MONO_DOUBLE_EXT), DECL(AL_FORMAT_STEREO8), DECL(AL_FORMAT_STEREO16), DECL(AL_FORMAT_STEREO_FLOAT32), DECL(AL_FORMAT_STEREO_DOUBLE_EXT), DECL(AL_FORMAT_MONO_IMA4), DECL(AL_FORMAT_STEREO_IMA4), DECL(AL_FORMAT_MONO_MSADPCM_SOFT), DECL(AL_FORMAT_STEREO_MSADPCM_SOFT), DECL(AL_FORMAT_QUAD8_LOKI), DECL(AL_FORMAT_QUAD16_LOKI), DECL(AL_FORMAT_QUAD8), DECL(AL_FORMAT_QUAD16), DECL(AL_FORMAT_QUAD32), DECL(AL_FORMAT_51CHN8), DECL(AL_FORMAT_51CHN16), DECL(AL_FORMAT_51CHN32), DECL(AL_FORMAT_61CHN8), DECL(AL_FORMAT_61CHN16), DECL(AL_FORMAT_61CHN32), DECL(AL_FORMAT_71CHN8), DECL(AL_FORMAT_71CHN16), DECL(AL_FORMAT_71CHN32), DECL(AL_FORMAT_REAR8), DECL(AL_FORMAT_REAR16), DECL(AL_FORMAT_REAR32), DECL(AL_FORMAT_MONO_MULAW), DECL(AL_FORMAT_MONO_MULAW_EXT), DECL(AL_FORMAT_STEREO_MULAW), DECL(AL_FORMAT_STEREO_MULAW_EXT), DECL(AL_FORMAT_QUAD_MULAW), DECL(AL_FORMAT_51CHN_MULAW), DECL(AL_FORMAT_61CHN_MULAW), DECL(AL_FORMAT_71CHN_MULAW), DECL(AL_FORMAT_REAR_MULAW), DECL(AL_FORMAT_MONO_ALAW_EXT), DECL(AL_FORMAT_STEREO_ALAW_EXT), DECL(AL_FORMAT_BFORMAT2D_8), DECL(AL_FORMAT_BFORMAT2D_16), DECL(AL_FORMAT_BFORMAT2D_FLOAT32), DECL(AL_FORMAT_BFORMAT2D_MULAW), DECL(AL_FORMAT_BFORMAT3D_8), DECL(AL_FORMAT_BFORMAT3D_16), DECL(AL_FORMAT_BFORMAT3D_FLOAT32), DECL(AL_FORMAT_BFORMAT3D_MULAW), DECL(AL_FREQUENCY), DECL(AL_BITS), DECL(AL_CHANNELS), DECL(AL_SIZE), DECL(AL_UNPACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_PACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_SOURCE_RADIUS), DECL(AL_STEREO_ANGLES), DECL(AL_UNUSED), DECL(AL_PENDING), DECL(AL_PROCESSED), DECL(AL_NO_ERROR), DECL(AL_INVALID_NAME), DECL(AL_INVALID_ENUM), DECL(AL_INVALID_VALUE), DECL(AL_INVALID_OPERATION), DECL(AL_OUT_OF_MEMORY), DECL(AL_VENDOR), DECL(AL_VERSION), DECL(AL_RENDERER), DECL(AL_EXTENSIONS), DECL(AL_DOPPLER_FACTOR), DECL(AL_DOPPLER_VELOCITY), DECL(AL_DISTANCE_MODEL), DECL(AL_SPEED_OF_SOUND), DECL(AL_SOURCE_DISTANCE_MODEL), DECL(AL_DEFERRED_UPDATES_SOFT), DECL(AL_GAIN_LIMIT_SOFT), DECL(AL_INVERSE_DISTANCE), DECL(AL_INVERSE_DISTANCE_CLAMPED), DECL(AL_LINEAR_DISTANCE), DECL(AL_LINEAR_DISTANCE_CLAMPED), DECL(AL_EXPONENT_DISTANCE), DECL(AL_EXPONENT_DISTANCE_CLAMPED), DECL(AL_FILTER_TYPE), DECL(AL_FILTER_NULL), DECL(AL_FILTER_LOWPASS), DECL(AL_FILTER_HIGHPASS), DECL(AL_FILTER_BANDPASS), DECL(AL_LOWPASS_GAIN), DECL(AL_LOWPASS_GAINHF), DECL(AL_HIGHPASS_GAIN), DECL(AL_HIGHPASS_GAINLF), DECL(AL_BANDPASS_GAIN), DECL(AL_BANDPASS_GAINHF), DECL(AL_BANDPASS_GAINLF), DECL(AL_EFFECT_TYPE), DECL(AL_EFFECT_NULL), DECL(AL_EFFECT_REVERB), DECL(AL_EFFECT_EAXREVERB), DECL(AL_EFFECT_CHORUS), DECL(AL_EFFECT_DISTORTION), DECL(AL_EFFECT_ECHO), DECL(AL_EFFECT_FLANGER), DECL(AL_EFFECT_PITCH_SHIFTER), DECL(AL_EFFECT_FREQUENCY_SHIFTER), DECL(AL_EFFECT_VOCAL_MORPHER), DECL(AL_EFFECT_RING_MODULATOR), DECL(AL_EFFECT_AUTOWAH), DECL(AL_EFFECT_COMPRESSOR), DECL(AL_EFFECT_EQUALIZER), DECL(AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT), DECL(AL_EFFECT_DEDICATED_DIALOGUE), DECL(AL_EFFECTSLOT_EFFECT), DECL(AL_EFFECTSLOT_GAIN), DECL(AL_EFFECTSLOT_AUXILIARY_SEND_AUTO), DECL(AL_EFFECTSLOT_NULL), DECL(AL_EAXREVERB_DENSITY), DECL(AL_EAXREVERB_DIFFUSION), DECL(AL_EAXREVERB_GAIN), DECL(AL_EAXREVERB_GAINHF), DECL(AL_EAXREVERB_GAINLF), DECL(AL_EAXREVERB_DECAY_TIME), DECL(AL_EAXREVERB_DECAY_HFRATIO), DECL(AL_EAXREVERB_DECAY_LFRATIO), DECL(AL_EAXREVERB_REFLECTIONS_GAIN), DECL(AL_EAXREVERB_REFLECTIONS_DELAY), DECL(AL_EAXREVERB_REFLECTIONS_PAN), DECL(AL_EAXREVERB_LATE_REVERB_GAIN), DECL(AL_EAXREVERB_LATE_REVERB_DELAY), DECL(AL_EAXREVERB_LATE_REVERB_PAN), DECL(AL_EAXREVERB_ECHO_TIME), DECL(AL_EAXREVERB_ECHO_DEPTH), DECL(AL_EAXREVERB_MODULATION_TIME), DECL(AL_EAXREVERB_MODULATION_DEPTH), DECL(AL_EAXREVERB_AIR_ABSORPTION_GAINHF), DECL(AL_EAXREVERB_HFREFERENCE), DECL(AL_EAXREVERB_LFREFERENCE), DECL(AL_EAXREVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_EAXREVERB_DECAY_HFLIMIT), DECL(AL_REVERB_DENSITY), DECL(AL_REVERB_DIFFUSION), DECL(AL_REVERB_GAIN), DECL(AL_REVERB_GAINHF), DECL(AL_REVERB_DECAY_TIME), DECL(AL_REVERB_DECAY_HFRATIO), DECL(AL_REVERB_REFLECTIONS_GAIN), DECL(AL_REVERB_REFLECTIONS_DELAY), DECL(AL_REVERB_LATE_REVERB_GAIN), DECL(AL_REVERB_LATE_REVERB_DELAY), DECL(AL_REVERB_AIR_ABSORPTION_GAINHF), DECL(AL_REVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_REVERB_DECAY_HFLIMIT), DECL(AL_CHORUS_WAVEFORM), DECL(AL_CHORUS_PHASE), DECL(AL_CHORUS_RATE), DECL(AL_CHORUS_DEPTH), DECL(AL_CHORUS_FEEDBACK), DECL(AL_CHORUS_DELAY), DECL(AL_DISTORTION_EDGE), DECL(AL_DISTORTION_GAIN), DECL(AL_DISTORTION_LOWPASS_CUTOFF), DECL(AL_DISTORTION_EQCENTER), DECL(AL_DISTORTION_EQBANDWIDTH), DECL(AL_ECHO_DELAY), DECL(AL_ECHO_LRDELAY), DECL(AL_ECHO_DAMPING), DECL(AL_ECHO_FEEDBACK), DECL(AL_ECHO_SPREAD), DECL(AL_FLANGER_WAVEFORM), DECL(AL_FLANGER_PHASE), DECL(AL_FLANGER_RATE), DECL(AL_FLANGER_DEPTH), DECL(AL_FLANGER_FEEDBACK), DECL(AL_FLANGER_DELAY), DECL(AL_FREQUENCY_SHIFTER_FREQUENCY), DECL(AL_FREQUENCY_SHIFTER_LEFT_DIRECTION), DECL(AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION), DECL(AL_RING_MODULATOR_FREQUENCY), DECL(AL_RING_MODULATOR_HIGHPASS_CUTOFF), DECL(AL_RING_MODULATOR_WAVEFORM), DECL(AL_PITCH_SHIFTER_COARSE_TUNE), DECL(AL_PITCH_SHIFTER_FINE_TUNE), DECL(AL_COMPRESSOR_ONOFF), DECL(AL_EQUALIZER_LOW_GAIN), DECL(AL_EQUALIZER_LOW_CUTOFF), DECL(AL_EQUALIZER_MID1_GAIN), DECL(AL_EQUALIZER_MID1_CENTER), DECL(AL_EQUALIZER_MID1_WIDTH), DECL(AL_EQUALIZER_MID2_GAIN), DECL(AL_EQUALIZER_MID2_CENTER), DECL(AL_EQUALIZER_MID2_WIDTH), DECL(AL_EQUALIZER_HIGH_GAIN), DECL(AL_EQUALIZER_HIGH_CUTOFF), DECL(AL_DEDICATED_GAIN), DECL(AL_AUTOWAH_ATTACK_TIME), DECL(AL_AUTOWAH_RELEASE_TIME), DECL(AL_AUTOWAH_RESONANCE), DECL(AL_AUTOWAH_PEAK_GAIN), DECL(AL_VOCAL_MORPHER_PHONEMEA), DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING), DECL(AL_VOCAL_MORPHER_PHONEMEB), DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING), DECL(AL_VOCAL_MORPHER_WAVEFORM), DECL(AL_VOCAL_MORPHER_RATE), DECL(AL_NUM_RESAMPLERS_SOFT), DECL(AL_DEFAULT_RESAMPLER_SOFT), DECL(AL_SOURCE_RESAMPLER_SOFT), DECL(AL_RESAMPLER_NAME_SOFT), DECL(AL_SOURCE_SPATIALIZE_SOFT), DECL(AL_AUTO_SOFT), DECL(AL_MAP_READ_BIT_SOFT), DECL(AL_MAP_WRITE_BIT_SOFT), DECL(AL_MAP_PERSISTENT_BIT_SOFT), DECL(AL_PRESERVE_DATA_BIT_SOFT), DECL(AL_EVENT_CALLBACK_FUNCTION_SOFT), DECL(AL_EVENT_CALLBACK_USER_PARAM_SOFT), DECL(AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT), DECL(AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT), DECL(AL_EVENT_TYPE_ERROR_SOFT), DECL(AL_EVENT_TYPE_PERFORMANCE_SOFT), DECL(AL_EVENT_TYPE_DEPRECATED_SOFT), }; #undef DECL constexpr ALCchar alcNoError[] = "No Error"; constexpr ALCchar alcErrInvalidDevice[] = "Invalid Device"; constexpr ALCchar alcErrInvalidContext[] = "Invalid Context"; constexpr ALCchar alcErrInvalidEnum[] = "Invalid Enum"; constexpr ALCchar alcErrInvalidValue[] = "Invalid Value"; constexpr ALCchar alcErrOutOfMemory[] = "Out of Memory"; /************************************************ * Global variables ************************************************/ /* Enumerated device names */ constexpr ALCchar alcDefaultName[] = "OpenAL Soft\0"; std::string alcAllDevicesList; std::string alcCaptureDeviceList; /* Default is always the first in the list */ al::string alcDefaultAllDevicesSpecifier; al::string alcCaptureDefaultDeviceSpecifier; /* Default context extensions */ constexpr ALchar alExtList[] = "AL_EXT_ALAW " "AL_EXT_BFORMAT " "AL_EXT_DOUBLE " "AL_EXT_EXPONENT_DISTANCE " "AL_EXT_FLOAT32 " "AL_EXT_IMA4 " "AL_EXT_LINEAR_DISTANCE " "AL_EXT_MCFORMATS " "AL_EXT_MULAW " "AL_EXT_MULAW_BFORMAT " "AL_EXT_MULAW_MCFORMATS " "AL_EXT_OFFSET " "AL_EXT_source_distance_model " "AL_EXT_SOURCE_RADIUS " "AL_EXT_STEREO_ANGLES " "AL_LOKI_quadriphonic " "AL_SOFT_block_alignment " "AL_SOFT_deferred_updates " "AL_SOFT_direct_channels " "AL_SOFTX_effect_chain " "AL_SOFTX_events " "AL_SOFTX_filter_gain_ex " "AL_SOFT_gain_clamp_ex " "AL_SOFT_loop_points " "AL_SOFTX_map_buffer " "AL_SOFT_MSADPCM " "AL_SOFT_source_latency " "AL_SOFT_source_length " "AL_SOFT_source_resampler " "AL_SOFT_source_spatialize"; std::atomic LastNullDeviceError{ALC_NO_ERROR}; /* Thread-local current context */ class ThreadCtx { ALCcontext *ctx{nullptr}; public: ~ThreadCtx() { if(ctx) { const bool result{ctx->releaseIfNoDelete()}; ERR("Context %p current for thread being destroyed%s!\n", decltype(std::declval()){ctx}, result ? "" : ", leak detected"); } } ALCcontext *get() const noexcept { return ctx; } void set(ALCcontext *ctx_) noexcept { ctx = ctx_; } }; thread_local ThreadCtx LocalContext; /* Process-wide current context */ std::atomic GlobalContext{nullptr}; /* Flag to trap ALC device errors */ bool TrapALCError{false}; /* One-time configuration init control */ std::once_flag alc_config_once{}; /* Default effect that applies to sources that don't have an effect on send 0 */ ALeffect DefaultEffect; /* Flag to specify if alcSuspendContext/alcProcessContext should defer/process * updates. */ bool SuspendDefers{true}; /* Initial seed for dithering. */ constexpr ALuint DitherRNGSeed{22222u}; /************************************************ * ALC information ************************************************/ constexpr ALCchar alcNoDeviceExtList[] = "ALC_ENUMERATE_ALL_EXT " "ALC_ENUMERATION_EXT " "ALC_EXT_CAPTURE " "ALC_EXT_thread_local_context " "ALC_SOFT_loopback"; constexpr ALCchar alcExtensionList[] = "ALC_ENUMERATE_ALL_EXT " "ALC_ENUMERATION_EXT " "ALC_EXT_CAPTURE " "ALC_EXT_DEDICATED " "ALC_EXT_disconnect " "ALC_EXT_EFX " "ALC_EXT_thread_local_context " "ALC_SOFT_device_clock " "ALC_SOFT_HRTF " "ALC_SOFT_loopback " "ALC_SOFT_output_limiter " "ALC_SOFT_pause_device"; constexpr ALCint alcMajorVersion = 1; constexpr ALCint alcMinorVersion = 1; constexpr ALCint alcEFXMajorVersion = 1; constexpr ALCint alcEFXMinorVersion = 0; /* To avoid extraneous allocations, a 0-sized FlexArray is defined * globally as a sharable object. MSVC warns that a zero-sized array will have * zero objects here, so silence that. */ DIAGNOSTIC_PUSH msc_pragma(warning(disable : 4815)) al::FlexArray EmptyContextArray{0u}; DIAGNOSTIC_POP using DeviceRef = al::intrusive_ptr; /************************************************ * Device lists ************************************************/ al::vector DeviceList; al::vector ContextList; std::recursive_mutex ListLock; void alc_initconfig(void) { if(auto loglevel = al::getenv("ALSOFT_LOGLEVEL")) { long lvl = strtol(loglevel->c_str(), nullptr, 0); if(lvl >= NoLog && lvl <= LogRef) gLogLevel = static_cast(lvl); } if(auto logfile = al::getenv("ALSOFT_LOGFILE")) { #ifdef _WIN32 std::wstring wname{utf8_to_wstr(logfile->c_str())}; FILE *logf{_wfopen(wname.c_str(), L"wt")}; #else FILE *logf{fopen(logfile->c_str(), "wt")}; #endif if(logf) gLogFile = logf; else ERR("Failed to open log file '%s'\n", logfile->c_str()); } TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH, ALSOFT_GIT_BRANCH); { al::string names; if(std::begin(BackendList) == BackendListEnd) names += "(none)"; else { const al::span infos{std::begin(BackendList), BackendListEnd}; names += infos[0].name; for(const auto &backend : infos.subspan(1)) { names += ", "; names += backend.name; } } TRACE("Supported backends: %s\n", names.c_str()); } ReadALConfig(); if(auto suspendmode = al::getenv("__ALSOFT_SUSPEND_CONTEXT")) { if(al::strcasecmp(suspendmode->c_str(), "ignore") == 0) { SuspendDefers = false; TRACE("Selected context suspend behavior, \"ignore\"\n"); } else ERR("Unhandled context suspend behavior setting: \"%s\"\n", suspendmode->c_str()); } int capfilter{0}; #if defined(HAVE_SSE4_1) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1; #elif defined(HAVE_SSE3) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3; #elif defined(HAVE_SSE2) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2; #elif defined(HAVE_SSE) capfilter |= CPU_CAP_SSE; #endif #ifdef HAVE_NEON capfilter |= CPU_CAP_NEON; #endif if(auto cpuopt = ConfigValueStr(nullptr, nullptr, "disable-cpu-exts")) { const char *str{cpuopt->c_str()}; if(al::strcasecmp(str, "all") == 0) capfilter = 0; else { const char *next = str; do { str = next; while(isspace(str[0])) str++; next = strchr(str, ','); if(!str[0] || str[0] == ',') continue; size_t len{next ? static_cast(next-str) : strlen(str)}; while(len > 0 && isspace(str[len-1])) len--; if(len == 3 && al::strncasecmp(str, "sse", len) == 0) capfilter &= ~CPU_CAP_SSE; else if(len == 4 && al::strncasecmp(str, "sse2", len) == 0) capfilter &= ~CPU_CAP_SSE2; else if(len == 4 && al::strncasecmp(str, "sse3", len) == 0) capfilter &= ~CPU_CAP_SSE3; else if(len == 6 && al::strncasecmp(str, "sse4.1", len) == 0) capfilter &= ~CPU_CAP_SSE4_1; else if(len == 4 && al::strncasecmp(str, "neon", len) == 0) capfilter &= ~CPU_CAP_NEON; else WARN("Invalid CPU extension \"%s\"\n", str); } while(next++); } } FillCPUCaps(capfilter); #ifdef _WIN32 #define DEF_MIXER_PRIO 1 #else #define DEF_MIXER_PRIO 0 #endif RTPrioLevel = ConfigValueInt(nullptr, nullptr, "rt-prio").value_or(DEF_MIXER_PRIO); #undef DEF_MIXER_PRIO aluInit(); aluInitMixer(); auto traperr = al::getenv("ALSOFT_TRAP_ERROR"); if(traperr && (al::strcasecmp(traperr->c_str(), "true") == 0 || std::strtol(traperr->c_str(), nullptr, 0) == 1)) { TrapALError = true; TrapALCError = true; } else { traperr = al::getenv("ALSOFT_TRAP_AL_ERROR"); if(traperr) TrapALError = al::strcasecmp(traperr->c_str(), "true") == 0 || strtol(traperr->c_str(), nullptr, 0) == 1; else TrapALError = !!GetConfigValueBool(nullptr, nullptr, "trap-al-error", false); traperr = al::getenv("ALSOFT_TRAP_ALC_ERROR"); if(traperr) TrapALCError = al::strcasecmp(traperr->c_str(), "true") == 0 || strtol(traperr->c_str(), nullptr, 0) == 1; else TrapALCError = !!GetConfigValueBool(nullptr, nullptr, "trap-alc-error", false); } if(auto boostopt = ConfigValueFloat(nullptr, "reverb", "boost")) { const float valf{std::isfinite(*boostopt) ? clampf(*boostopt, -24.0f, 24.0f) : 0.0f}; ReverbBoost *= std::pow(10.0f, valf / 20.0f); } auto devopt = al::getenv("ALSOFT_DRIVERS"); if(devopt || (devopt=ConfigValueStr(nullptr, nullptr, "drivers"))) { auto backendlist_cur = std::begin(BackendList); bool endlist{true}; const char *next{devopt->c_str()}; do { const char *devs{next}; while(isspace(devs[0])) devs++; next = strchr(devs, ','); const bool delitem{devs[0] == '-'}; if(devs[0] == '-') devs++; if(!devs[0] || devs[0] == ',') { endlist = false; continue; } endlist = true; size_t len{next ? (static_cast(next-devs)) : strlen(devs)}; while(len > 0 && isspace(devs[len-1])) --len; #ifdef HAVE_WASAPI /* HACK: For backwards compatibility, convert backend references of * mmdevapi to wasapi. This should eventually be removed. */ if(len == 8 && strncmp(devs, "mmdevapi", len) == 0) { devs = "wasapi"; len = 6; } #endif auto find_backend = [devs,len](const BackendInfo &backend) -> bool { return len == strlen(backend.name) && strncmp(backend.name, devs, len) == 0; }; auto this_backend = std::find_if(std::begin(BackendList), BackendListEnd, find_backend); if(this_backend == BackendListEnd) continue; if(delitem) BackendListEnd = std::move(this_backend+1, BackendListEnd, this_backend); else backendlist_cur = std::rotate(backendlist_cur, this_backend, this_backend+1); } while(next++); if(endlist) BackendListEnd = backendlist_cur; } auto init_backend = [](BackendInfo &backend) -> bool { if(PlaybackFactory && CaptureFactory) return true; BackendFactory &factory = backend.getFactory(); if(!factory.init()) { WARN("Failed to initialize backend \"%s\"\n", backend.name); return true; } TRACE("Initialized backend \"%s\"\n", backend.name); if(!PlaybackFactory && factory.querySupport(BackendType::Playback)) { PlaybackFactory = &factory; TRACE("Added \"%s\" for playback\n", backend.name); } if(!CaptureFactory && factory.querySupport(BackendType::Capture)) { CaptureFactory = &factory; TRACE("Added \"%s\" for capture\n", backend.name); } return false; }; BackendListEnd = std::remove_if(std::begin(BackendList), BackendListEnd, init_backend); LoopbackBackendFactory::getFactory().init(); if(!PlaybackFactory) WARN("No playback backend available!\n"); if(!CaptureFactory) WARN("No capture backend available!\n"); if(auto exclopt = ConfigValueStr(nullptr, nullptr, "excludefx")) { const char *next{exclopt->c_str()}; do { const char *str{next}; next = strchr(str, ','); if(!str[0] || next == str) continue; size_t len{next ? static_cast(next-str) : strlen(str)}; for(const EffectList &effectitem : gEffectList) { if(len == strlen(effectitem.name) && strncmp(effectitem.name, str, len) == 0) DisabledEffects[effectitem.type] = AL_TRUE; } } while(next++); } InitEffect(&DefaultEffect); auto defrevopt = al::getenv("ALSOFT_DEFAULT_REVERB"); if(defrevopt || (defrevopt=ConfigValueStr(nullptr, nullptr, "default-reverb"))) LoadReverbPreset(defrevopt->c_str(), &DefaultEffect); } #define DO_INITCONFIG() std::call_once(alc_config_once, [](){alc_initconfig();}) /************************************************ * Device enumeration ************************************************/ void ProbeAllDevicesList() { DO_INITCONFIG(); std::lock_guard _{ListLock}; alcAllDevicesList.clear(); if(PlaybackFactory) PlaybackFactory->probe(DevProbe::Playback, &alcAllDevicesList); } void ProbeCaptureDeviceList() { DO_INITCONFIG(); std::lock_guard _{ListLock}; alcCaptureDeviceList.clear(); if(CaptureFactory) CaptureFactory->probe(DevProbe::Capture, &alcCaptureDeviceList); } } // namespace /* Mixing thread piority level */ ALint RTPrioLevel; FILE *gLogFile{stderr}; #ifdef _DEBUG LogLevel gLogLevel{LogWarning}; #else LogLevel gLogLevel{LogError}; #endif /************************************************ * Library initialization ************************************************/ #if defined(_WIN32) && !defined(AL_LIBTYPE_STATIC) BOOL APIENTRY DllMain(HINSTANCE module, DWORD reason, LPVOID /*reserved*/) { switch(reason) { case DLL_PROCESS_ATTACH: /* Pin the DLL so we won't get unloaded until the process terminates */ GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, reinterpret_cast(module), &module); break; } return TRUE; } #endif /************************************************ * Device format information ************************************************/ const ALCchar *DevFmtTypeString(DevFmtType type) noexcept { switch(type) { case DevFmtByte: return "Signed Byte"; case DevFmtUByte: return "Unsigned Byte"; case DevFmtShort: return "Signed Short"; case DevFmtUShort: return "Unsigned Short"; case DevFmtInt: return "Signed Int"; case DevFmtUInt: return "Unsigned Int"; case DevFmtFloat: return "Float"; } return "(unknown type)"; } const ALCchar *DevFmtChannelsString(DevFmtChannels chans) noexcept { switch(chans) { case DevFmtMono: return "Mono"; case DevFmtStereo: return "Stereo"; case DevFmtQuad: return "Quadraphonic"; case DevFmtX51: return "5.1 Surround"; case DevFmtX51Rear: return "5.1 Surround (Rear)"; case DevFmtX61: return "6.1 Surround"; case DevFmtX71: return "7.1 Surround"; case DevFmtAmbi3D: return "Ambisonic 3D"; } return "(unknown channels)"; } ALuint BytesFromDevFmt(DevFmtType type) noexcept { switch(type) { case DevFmtByte: return sizeof(ALbyte); case DevFmtUByte: return sizeof(ALubyte); case DevFmtShort: return sizeof(ALshort); case DevFmtUShort: return sizeof(ALushort); case DevFmtInt: return sizeof(ALint); case DevFmtUInt: return sizeof(ALuint); case DevFmtFloat: return sizeof(ALfloat); } return 0; } ALuint ChannelsFromDevFmt(DevFmtChannels chans, ALuint ambiorder) noexcept { switch(chans) { case DevFmtMono: return 1; case DevFmtStereo: return 2; case DevFmtQuad: return 4; case DevFmtX51: return 6; case DevFmtX51Rear: return 6; case DevFmtX61: return 7; case DevFmtX71: return 8; case DevFmtAmbi3D: return (ambiorder+1) * (ambiorder+1); } return 0; } struct DevFmtPair { DevFmtChannels chans; DevFmtType type; }; static al::optional DecomposeDevFormat(ALenum format) { static const struct { ALenum format; DevFmtChannels channels; DevFmtType type; } list[] = { { AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte }, { AL_FORMAT_MONO16, DevFmtMono, DevFmtShort }, { AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat }, { AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte }, { AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort }, { AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat }, { AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte }, { AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort }, { AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat }, { AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte }, { AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort }, { AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat }, { AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte }, { AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort }, { AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat }, { AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte }, { AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort }, { AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat }, }; for(const auto &item : list) { if(item.format == format) return al::make_optional(DevFmtPair{item.channels, item.type}); } return al::nullopt; } static ALCboolean IsValidALCType(ALCenum type) { switch(type) { case ALC_BYTE_SOFT: case ALC_UNSIGNED_BYTE_SOFT: case ALC_SHORT_SOFT: case ALC_UNSIGNED_SHORT_SOFT: case ALC_INT_SOFT: case ALC_UNSIGNED_INT_SOFT: case ALC_FLOAT_SOFT: return ALC_TRUE; } return ALC_FALSE; } static ALCboolean IsValidALCChannels(ALCenum channels) { switch(channels) { case ALC_MONO_SOFT: case ALC_STEREO_SOFT: case ALC_QUAD_SOFT: case ALC_5POINT1_SOFT: case ALC_6POINT1_SOFT: case ALC_7POINT1_SOFT: case ALC_BFORMAT3D_SOFT: return ALC_TRUE; } return ALC_FALSE; } static ALCboolean IsValidAmbiLayout(ALCenum layout) { switch(layout) { case ALC_ACN_SOFT: case ALC_FUMA_SOFT: return ALC_TRUE; } return ALC_FALSE; } static ALCboolean IsValidAmbiScaling(ALCenum scaling) { switch(scaling) { case ALC_N3D_SOFT: case ALC_SN3D_SOFT: case ALC_FUMA_SOFT: return ALC_TRUE; } return ALC_FALSE; } /************************************************ * Miscellaneous ALC helpers ************************************************/ /* SetDefaultWFXChannelOrder * * Sets the default channel order used by WaveFormatEx. */ void SetDefaultWFXChannelOrder(ALCdevice *device) { device->RealOut.ChannelIndex.fill(INVALID_CHANNEL_INDEX); switch(device->FmtChans) { case DevFmtMono: device->RealOut.ChannelIndex[FrontCenter] = 0; break; case DevFmtStereo: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; break; case DevFmtQuad: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[BackLeft] = 2; device->RealOut.ChannelIndex[BackRight] = 3; break; case DevFmtX51: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[FrontCenter] = 2; device->RealOut.ChannelIndex[LFE] = 3; device->RealOut.ChannelIndex[SideLeft] = 4; device->RealOut.ChannelIndex[SideRight] = 5; break; case DevFmtX51Rear: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[FrontCenter] = 2; device->RealOut.ChannelIndex[LFE] = 3; device->RealOut.ChannelIndex[BackLeft] = 4; device->RealOut.ChannelIndex[BackRight] = 5; break; case DevFmtX61: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[FrontCenter] = 2; device->RealOut.ChannelIndex[LFE] = 3; device->RealOut.ChannelIndex[BackCenter] = 4; device->RealOut.ChannelIndex[SideLeft] = 5; device->RealOut.ChannelIndex[SideRight] = 6; break; case DevFmtX71: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[FrontCenter] = 2; device->RealOut.ChannelIndex[LFE] = 3; device->RealOut.ChannelIndex[BackLeft] = 4; device->RealOut.ChannelIndex[BackRight] = 5; device->RealOut.ChannelIndex[SideLeft] = 6; device->RealOut.ChannelIndex[SideRight] = 7; break; case DevFmtAmbi3D: device->RealOut.ChannelIndex[Aux0] = 0; if(device->mAmbiOrder > 0) { device->RealOut.ChannelIndex[Aux1] = 1; device->RealOut.ChannelIndex[Aux2] = 2; device->RealOut.ChannelIndex[Aux3] = 3; } if(device->mAmbiOrder > 1) { device->RealOut.ChannelIndex[Aux4] = 4; device->RealOut.ChannelIndex[Aux5] = 5; device->RealOut.ChannelIndex[Aux6] = 6; device->RealOut.ChannelIndex[Aux7] = 7; device->RealOut.ChannelIndex[Aux8] = 8; } if(device->mAmbiOrder > 2) { device->RealOut.ChannelIndex[Aux9] = 9; device->RealOut.ChannelIndex[Aux10] = 10; device->RealOut.ChannelIndex[Aux11] = 11; device->RealOut.ChannelIndex[Aux12] = 12; device->RealOut.ChannelIndex[Aux13] = 13; device->RealOut.ChannelIndex[Aux14] = 14; device->RealOut.ChannelIndex[Aux15] = 15; } break; } } /* SetDefaultChannelOrder * * Sets the default channel order used by most non-WaveFormatEx-based APIs. */ void SetDefaultChannelOrder(ALCdevice *device) { device->RealOut.ChannelIndex.fill(INVALID_CHANNEL_INDEX); switch(device->FmtChans) { case DevFmtX51Rear: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[BackLeft] = 2; device->RealOut.ChannelIndex[BackRight] = 3; device->RealOut.ChannelIndex[FrontCenter] = 4; device->RealOut.ChannelIndex[LFE] = 5; return; case DevFmtX71: device->RealOut.ChannelIndex[FrontLeft] = 0; device->RealOut.ChannelIndex[FrontRight] = 1; device->RealOut.ChannelIndex[BackLeft] = 2; device->RealOut.ChannelIndex[BackRight] = 3; device->RealOut.ChannelIndex[FrontCenter] = 4; device->RealOut.ChannelIndex[LFE] = 5; device->RealOut.ChannelIndex[SideLeft] = 6; device->RealOut.ChannelIndex[SideRight] = 7; return; /* Same as WFX order */ case DevFmtMono: case DevFmtStereo: case DevFmtQuad: case DevFmtX51: case DevFmtX61: case DevFmtAmbi3D: SetDefaultWFXChannelOrder(device); break; } } void ALCcontext::processUpdates() { std::lock_guard _{mPropLock}; if(mDeferUpdates.exchange(false)) { /* Tell the mixer to stop applying updates, then wait for any active * updating to finish, before providing updates. */ mHoldUpdates.store(true, std::memory_order_release); while((mUpdateCount.load(std::memory_order_acquire)&1) != 0) std::this_thread::yield(); if(!mPropsClean.test_and_set(std::memory_order_acq_rel)) UpdateContextProps(this); if(!mListener.PropsClean.test_and_set(std::memory_order_acq_rel)) UpdateListenerProps(this); UpdateAllEffectSlotProps(this); UpdateAllSourceProps(this); /* Now with all updates declared, let the mixer continue applying them * so they all happen at once. */ mHoldUpdates.store(false, std::memory_order_release); } } /* alcSetError * * Stores the latest ALC device error */ static void alcSetError(ALCdevice *device, ALCenum errorCode) { WARN("Error generated on device %p, code 0x%04x\n", decltype(std::declval()){device}, errorCode); if(TrapALCError) { #ifdef _WIN32 /* DebugBreak() will cause an exception if there is no debugger */ if(IsDebuggerPresent()) DebugBreak(); #elif defined(SIGTRAP) raise(SIGTRAP); #endif } if(device) device->LastError.store(errorCode); else LastNullDeviceError.store(errorCode); } static std::unique_ptr CreateDeviceLimiter(const ALCdevice *device, const ALfloat threshold) { return CompressorInit(static_cast(device->RealOut.Buffer.size()), static_cast(device->Frequency), AL_TRUE, AL_TRUE, AL_TRUE, AL_TRUE, AL_TRUE, 0.001f, 0.002f, 0.0f, 0.0f, threshold, INFINITY, 0.0f, 0.020f, 0.200f); } /* UpdateClockBase * * Updates the device's base clock time with however many samples have been * done. This is used so frequency changes on the device don't cause the time * to jump forward or back. Must not be called while the device is running/ * mixing. */ static inline void UpdateClockBase(ALCdevice *device) { IncrementRef(device->MixCount); device->ClockBase += nanoseconds{seconds{device->SamplesDone}} / device->Frequency; device->SamplesDone = 0; IncrementRef(device->MixCount); } /* UpdateDeviceParams * * Updates device parameters according to the attribute list (caller is * responsible for holding the list lock). */ static ALCenum UpdateDeviceParams(ALCdevice *device, const ALCint *attrList) { HrtfRequestMode hrtf_userreq{Hrtf_Default}; HrtfRequestMode hrtf_appreq{Hrtf_Default}; ALCenum gainLimiter{device->LimiterState}; const ALCuint old_sends{device->NumAuxSends}; ALCuint new_sends{device->NumAuxSends}; DevFmtChannels oldChans; DevFmtType oldType; ALboolean update_failed; ALCsizei hrtf_id{-1}; ALCuint oldFreq; if((!attrList || !attrList[0]) && device->Type == Loopback) { WARN("Missing attributes for loopback device\n"); return ALC_INVALID_VALUE; } // Check for attributes if(attrList && attrList[0]) { ALCenum alayout{AL_NONE}; ALCenum ascale{AL_NONE}; ALCenum schans{AL_NONE}; ALCenum stype{AL_NONE}; ALCsizei attrIdx{0}; ALCuint aorder{0}; ALCuint freq{0u}; ALuint numMono{device->NumMonoSources}; ALuint numStereo{device->NumStereoSources}; ALuint numSends{old_sends}; #define TRACE_ATTR(a, v) TRACE("%s = %d\n", #a, v) while(attrList[attrIdx]) { switch(attrList[attrIdx]) { case ALC_FORMAT_CHANNELS_SOFT: schans = attrList[attrIdx + 1]; TRACE_ATTR(ALC_FORMAT_CHANNELS_SOFT, schans); break; case ALC_FORMAT_TYPE_SOFT: stype = attrList[attrIdx + 1]; TRACE_ATTR(ALC_FORMAT_TYPE_SOFT, stype); break; case ALC_FREQUENCY: freq = static_cast(attrList[attrIdx + 1]); TRACE_ATTR(ALC_FREQUENCY, freq); break; case ALC_AMBISONIC_LAYOUT_SOFT: alayout = attrList[attrIdx + 1]; TRACE_ATTR(ALC_AMBISONIC_LAYOUT_SOFT, alayout); break; case ALC_AMBISONIC_SCALING_SOFT: ascale = attrList[attrIdx + 1]; TRACE_ATTR(ALC_AMBISONIC_SCALING_SOFT, ascale); break; case ALC_AMBISONIC_ORDER_SOFT: aorder = static_cast(attrList[attrIdx + 1]); TRACE_ATTR(ALC_AMBISONIC_ORDER_SOFT, aorder); break; case ALC_MONO_SOURCES: numMono = static_cast(attrList[attrIdx + 1]); TRACE_ATTR(ALC_MONO_SOURCES, numMono); if(numMono > INT_MAX) numMono = 0; break; case ALC_STEREO_SOURCES: numStereo = static_cast(attrList[attrIdx + 1]); TRACE_ATTR(ALC_STEREO_SOURCES, numStereo); if(numStereo > INT_MAX) numStereo = 0; break; case ALC_MAX_AUXILIARY_SENDS: numSends = static_cast(attrList[attrIdx + 1]); TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends); if(numSends > INT_MAX) numSends = 0; else numSends = minu(numSends, MAX_SENDS); break; case ALC_HRTF_SOFT: TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]); if(attrList[attrIdx + 1] == ALC_FALSE) hrtf_appreq = Hrtf_Disable; else if(attrList[attrIdx + 1] == ALC_TRUE) hrtf_appreq = Hrtf_Enable; else hrtf_appreq = Hrtf_Default; break; case ALC_HRTF_ID_SOFT: hrtf_id = attrList[attrIdx + 1]; TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id); break; case ALC_OUTPUT_LIMITER_SOFT: gainLimiter = attrList[attrIdx + 1]; TRACE_ATTR(ALC_OUTPUT_LIMITER_SOFT, gainLimiter); break; default: TRACE("0x%04X = %d (0x%x)\n", attrList[attrIdx], attrList[attrIdx + 1], attrList[attrIdx + 1]); break; } attrIdx += 2; } #undef TRACE_ATTR const bool loopback{device->Type == Loopback}; if(loopback) { if(!schans || !stype || !freq) { WARN("Missing format for loopback device\n"); return ALC_INVALID_VALUE; } if(!IsValidALCChannels(schans) || !IsValidALCType(stype) || freq < MIN_OUTPUT_RATE) return ALC_INVALID_VALUE; if(schans == ALC_BFORMAT3D_SOFT) { if(!alayout || !ascale || !aorder) { WARN("Missing ambisonic info for loopback device\n"); return ALC_INVALID_VALUE; } if(!IsValidAmbiLayout(alayout) || !IsValidAmbiScaling(ascale)) return ALC_INVALID_VALUE; if(aorder < 1 || aorder > MAX_AMBI_ORDER) return ALC_INVALID_VALUE; if((alayout == ALC_FUMA_SOFT || ascale == ALC_FUMA_SOFT) && aorder > 3) return ALC_INVALID_VALUE; } } /* If a context is already running on the device, stop playback so the * device attributes can be updated. */ if(device->Flags.get()) device->Backend->stop(); device->Flags.unset(); UpdateClockBase(device); const char *devname{nullptr}; if(!loopback) { devname = device->DeviceName.c_str(); device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES; device->UpdateSize = DEFAULT_UPDATE_SIZE; device->Frequency = DEFAULT_OUTPUT_RATE; freq = ConfigValueUInt(devname, nullptr, "frequency").value_or(freq); if(freq < 1) device->Flags.unset(); else { freq = maxu(freq, MIN_OUTPUT_RATE); device->UpdateSize = (device->UpdateSize*freq + device->Frequency/2) / device->Frequency; device->BufferSize = (device->BufferSize*freq + device->Frequency/2) / device->Frequency; device->Frequency = freq; device->Flags.set(); } if(auto persizeopt = ConfigValueUInt(devname, nullptr, "period_size")) device->UpdateSize = clampu(*persizeopt, 64, 8192); if(auto peropt = ConfigValueUInt(devname, nullptr, "periods")) device->BufferSize = device->UpdateSize * clampu(*peropt, 2, 16); else device->BufferSize = maxu(device->BufferSize, device->UpdateSize*2); } else { device->Frequency = freq; device->FmtChans = static_cast(schans); device->FmtType = static_cast(stype); if(schans == ALC_BFORMAT3D_SOFT) { device->mAmbiOrder = aorder; device->mAmbiLayout = static_cast(alayout); device->mAmbiScale = static_cast(ascale); } } if(numMono > INT_MAX-numStereo) numMono = INT_MAX-numStereo; numMono += numStereo; if(auto srcsopt = ConfigValueUInt(devname, nullptr, "sources")) { if(*srcsopt <= 0) numMono = 256; else numMono = *srcsopt; } else numMono = maxu(numMono, 256); numStereo = minu(numStereo, numMono); numMono -= numStereo; device->SourcesMax = numMono + numStereo; device->NumMonoSources = numMono; device->NumStereoSources = numStereo; if(auto sendsopt = ConfigValueInt(devname, nullptr, "sends")) new_sends = minu(numSends, static_cast(clampi(*sendsopt, 0, MAX_SENDS))); else new_sends = numSends; } if(device->Flags.get()) return ALC_NO_ERROR; device->AvgSpeakerDist = 0.0f; device->Uhj_Encoder = nullptr; device->AmbiDecoder = nullptr; device->Bs2b = nullptr; device->PostProcess = nullptr; device->Stablizer = nullptr; device->Limiter = nullptr; device->ChannelDelay.clear(); device->Dry.AmbiMap.fill(BFChannelConfig{}); device->Dry.Buffer = {}; std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0u); device->RealOut.ChannelIndex.fill(INVALID_CHANNEL_INDEX); device->RealOut.Buffer = {}; device->MixBuffer.clear(); device->MixBuffer.shrink_to_fit(); UpdateClockBase(device); device->FixedLatency = nanoseconds::zero(); device->DitherDepth = 0.0f; device->DitherSeed = DitherRNGSeed; /************************************************************************* * Update device format request if HRTF is requested */ device->HrtfStatus = ALC_HRTF_DISABLED_SOFT; if(device->Type != Loopback) { if(auto hrtfopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf")) { const char *hrtf{hrtfopt->c_str()}; if(al::strcasecmp(hrtf, "true") == 0) hrtf_userreq = Hrtf_Enable; else if(al::strcasecmp(hrtf, "false") == 0) hrtf_userreq = Hrtf_Disable; else if(al::strcasecmp(hrtf, "auto") != 0) ERR("Unexpected hrtf value: %s\n", hrtf); } if(hrtf_userreq == Hrtf_Enable || (hrtf_userreq != Hrtf_Disable && hrtf_appreq == Hrtf_Enable)) { HrtfEntry *hrtf{nullptr}; if(device->HrtfList.empty()) device->HrtfList = EnumerateHrtf(device->DeviceName.c_str()); if(!device->HrtfList.empty()) { if(hrtf_id >= 0 && static_cast(hrtf_id) < device->HrtfList.size()) hrtf = GetLoadedHrtf(device->HrtfList[static_cast(hrtf_id)].hrtf); else hrtf = GetLoadedHrtf(device->HrtfList.front().hrtf); } if(hrtf) { device->FmtChans = DevFmtStereo; device->Frequency = hrtf->sampleRate; device->Flags.set(); if(HrtfEntry *oldhrtf{device->mHrtf}) oldhrtf->DecRef(); device->mHrtf = hrtf; } else { hrtf_userreq = Hrtf_Default; hrtf_appreq = Hrtf_Disable; device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; } } } oldFreq = device->Frequency; oldChans = device->FmtChans; oldType = device->FmtType; TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u / %u buffer\n", device->Flags.get()?"*":"", DevFmtChannelsString(device->FmtChans), device->Flags.get()?"*":"", DevFmtTypeString(device->FmtType), device->Flags.get()?"*":"", device->Frequency, device->UpdateSize, device->BufferSize); try { if(device->Backend->reset() == false) return ALC_INVALID_DEVICE; } catch(std::exception &e) { ERR("Device reset failed: %s\n", e.what()); return ALC_INVALID_DEVICE; } if(device->FmtChans != oldChans && device->Flags.get()) { ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans), DevFmtChannelsString(device->FmtChans)); device->Flags.unset(); } if(device->FmtType != oldType && device->Flags.get()) { ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType), DevFmtTypeString(device->FmtType)); device->Flags.unset(); } if(device->Frequency != oldFreq && device->Flags.get()) { WARN("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency); device->Flags.unset(); } TRACE("Post-reset: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); aluInitRenderer(device, hrtf_id, hrtf_appreq, hrtf_userreq); device->NumAuxSends = new_sends; TRACE("Max sources: %d (%d + %d), effect slots: %d, sends: %d\n", device->SourcesMax, device->NumMonoSources, device->NumStereoSources, device->AuxiliaryEffectSlotMax, device->NumAuxSends); /* Enable the stablizer only for formats that have front-left, front-right, * and front-center outputs. */ switch(device->FmtChans) { case DevFmtX51: case DevFmtX51Rear: case DevFmtX61: case DevFmtX71: if(GetConfigValueBool(device->DeviceName.c_str(), nullptr, "front-stablizer", 0)) { auto stablizer = al::make_unique(); /* Initialize band-splitting filters for the front-left and front- * right channels, with a crossover at 5khz (could be higher). */ const ALfloat scale{5000.0f / static_cast(device->Frequency)}; stablizer->LFilter.init(scale); stablizer->RFilter = stablizer->LFilter; device->Stablizer = std::move(stablizer); /* NOTE: Don't know why this has to be "copied" into a local static * constexpr variable to avoid a reference on * FrontStablizer::DelayLength... */ static constexpr size_t StablizerDelay{FrontStablizer::DelayLength}; device->FixedLatency += nanoseconds{seconds{StablizerDelay}} / device->Frequency; } break; case DevFmtMono: case DevFmtStereo: case DevFmtQuad: case DevFmtAmbi3D: break; } TRACE("Front stablizer %s\n", device->Stablizer ? "enabled" : "disabled"); if(GetConfigValueBool(device->DeviceName.c_str(), nullptr, "dither", 1)) { ALint depth{ ConfigValueInt(device->DeviceName.c_str(), nullptr, "dither-depth").value_or(0)}; if(depth <= 0) { switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: depth = 8; break; case DevFmtShort: case DevFmtUShort: depth = 16; break; case DevFmtInt: case DevFmtUInt: case DevFmtFloat: break; } } if(depth > 0) { depth = clampi(depth, 2, 24); device->DitherDepth = std::pow(2.0f, static_cast(depth-1)); } } if(!(device->DitherDepth > 0.0f)) TRACE("Dithering disabled\n"); else TRACE("Dithering enabled (%d-bit, %g)\n", float2int(std::log2(device->DitherDepth)+0.5f)+1, device->DitherDepth); device->LimiterState = gainLimiter; if(auto limopt = ConfigValueBool(device->DeviceName.c_str(), nullptr, "output-limiter")) gainLimiter = *limopt ? ALC_TRUE : ALC_FALSE; /* Valid values for gainLimiter are ALC_DONT_CARE_SOFT, ALC_TRUE, and * ALC_FALSE. For ALC_DONT_CARE_SOFT, use the limiter for integer-based * output (where samples must be clamped), and don't for floating-point * (which can take unclamped samples). */ if(gainLimiter == ALC_DONT_CARE_SOFT) { switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: case DevFmtShort: case DevFmtUShort: case DevFmtInt: case DevFmtUInt: gainLimiter = ALC_TRUE; break; case DevFmtFloat: gainLimiter = ALC_FALSE; break; } } if(gainLimiter == ALC_FALSE) TRACE("Output limiter disabled\n"); else { ALfloat thrshld = 1.0f; switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: thrshld = 127.0f / 128.0f; break; case DevFmtShort: case DevFmtUShort: thrshld = 32767.0f / 32768.0f; break; case DevFmtInt: case DevFmtUInt: case DevFmtFloat: break; } if(device->DitherDepth > 0.0f) thrshld -= 1.0f / device->DitherDepth; const float thrshld_dB{std::log10(thrshld) * 20.0f}; auto limiter = CreateDeviceLimiter(device, thrshld_dB); /* Convert the lookahead from samples to nanosamples to nanoseconds. */ device->FixedLatency += nanoseconds{seconds{limiter->getLookAhead()}} / device->Frequency; device->Limiter = std::move(limiter); TRACE("Output limiter enabled, %.4fdB limit\n", thrshld_dB); } TRACE("Fixed device latency: %" PRId64 "ns\n", int64_t{device->FixedLatency.count()}); /* Need to delay returning failure until replacement Send arrays have been * allocated with the appropriate size. */ update_failed = AL_FALSE; FPUCtl mixer_mode{}; for(ALCcontext *context : *device->mContexts.load()) { if(context->mDefaultSlot) { ALeffectslot *slot = context->mDefaultSlot.get(); aluInitEffectPanning(slot, device); EffectState *state{slot->Effect.State}; state->mOutTarget = device->Dry.Buffer; if(state->deviceUpdate(device) == AL_FALSE) update_failed = AL_TRUE; else UpdateEffectSlotProps(slot, context); } std::unique_lock proplock{context->mPropLock}; std::unique_lock slotlock{context->mEffectSlotLock}; for(auto &sublist : context->mEffectSlotList) { uint64_t usemask = ~sublist.FreeMask; while(usemask) { ALsizei idx = CTZ64(usemask); ALeffectslot *slot = sublist.EffectSlots + idx; usemask &= ~(1_u64 << idx); aluInitEffectPanning(slot, device); EffectState *state{slot->Effect.State}; state->mOutTarget = device->Dry.Buffer; if(state->deviceUpdate(device) == AL_FALSE) update_failed = AL_TRUE; else UpdateEffectSlotProps(slot, context); } } slotlock.unlock(); std::unique_lock srclock{context->mSourceLock}; for(auto &sublist : context->mSourceList) { uint64_t usemask = ~sublist.FreeMask; while(usemask) { ALsizei idx = CTZ64(usemask); ALsource *source = sublist.Sources + idx; usemask &= ~(1_u64 << idx); if(old_sends != device->NumAuxSends) { if(source->Send.size() > device->NumAuxSends) { auto clear_send = [](ALsource::SendData &send) -> void { if(send.Slot) DecrementRef(send.Slot->ref); send.Slot = nullptr; }; auto send_begin = source->Send.begin() + static_cast(device->NumAuxSends); std::for_each(send_begin, source->Send.end(), clear_send); } source->Send.resize(device->NumAuxSends, {nullptr, 1.0f, 1.0f, LOWPASSFREQREF, 1.0f, HIGHPASSFREQREF}); source->Send.shrink_to_fit(); } source->PropsClean.clear(std::memory_order_release); } } /* Clear any pre-existing voice property structs, in case the number of * auxiliary sends is changing. Active sources will have updates * respecified in UpdateAllSourceProps. */ ALvoiceProps *vprops{context->mFreeVoiceProps.exchange(nullptr, std::memory_order_acq_rel)}; while(vprops) { ALvoiceProps *next = vprops->next.load(std::memory_order_relaxed); delete vprops; vprops = next; } if(device->NumAuxSends < old_sends) { const ALuint num_sends{device->NumAuxSends}; /* Clear extraneous property set sends. */ auto clear_sends = [num_sends](ALvoice &voice) -> void { std::fill(std::begin(voice.mProps.Send)+num_sends, std::end(voice.mProps.Send), ALvoiceProps::SendData{}); std::fill(voice.mSend.begin()+num_sends, voice.mSend.end(), ALvoice::TargetData{}); auto clear_chan_sends = [num_sends](ALvoice::ChannelData &chandata) -> void { std::fill(chandata.mWetParams.begin()+num_sends, chandata.mWetParams.end(), SendParams{}); }; std::for_each(voice.mChans.begin(), voice.mChans.end(), clear_chan_sends); }; std::for_each(context->mVoices.begin(), context->mVoices.end(), clear_sends); } auto reset_voice = [device](ALvoice &voice) -> void { delete voice.mUpdate.exchange(nullptr, std::memory_order_acq_rel); /* Force the voice to stopped if it was stopping. */ ALvoice::State vstate{ALvoice::Stopping}; voice.mPlayState.compare_exchange_strong(vstate, ALvoice::Stopped, std::memory_order_acquire, std::memory_order_acquire); if(voice.mSourceID.load(std::memory_order_relaxed) == 0u) return; if(device->AvgSpeakerDist > 0.0f) { /* Reinitialize the NFC filters for new parameters. */ const ALfloat w1{SPEEDOFSOUNDMETRESPERSEC / (device->AvgSpeakerDist * static_cast(device->Frequency))}; auto init_nfc = [w1](ALvoice::ChannelData &chandata) -> void { chandata.mDryParams.NFCtrlFilter.init(w1); }; std::for_each(voice.mChans.begin(), voice.mChans.begin()+voice.mNumChannels, init_nfc); } }; std::for_each(context->mVoices.begin(), context->mVoices.end(), reset_voice); srclock.unlock(); context->mPropsClean.test_and_set(std::memory_order_release); UpdateContextProps(context); context->mListener.PropsClean.test_and_set(std::memory_order_release); UpdateListenerProps(context); UpdateAllSourceProps(context); } mixer_mode.leave(); if(update_failed) return ALC_INVALID_DEVICE; if(!device->Flags.get()) { try { auto backend = device->Backend.get(); if(!backend->start()) throw al::backend_exception{ALC_INVALID_DEVICE, "Backend error"}; device->Flags.set(); } catch(al::backend_exception& e) { WARN("Failed to start playback: %s\n", e.what()); return ALC_INVALID_DEVICE; } } return ALC_NO_ERROR; } ALCdevice::ALCdevice(DeviceType type) : Type{type}, mContexts{&EmptyContextArray} { } /* ALCdevice::~ALCdevice * * Frees the device structure, and destroys any objects the app failed to * delete. Called once there's no more references on the device. */ ALCdevice::~ALCdevice() { TRACE("Freeing device %p\n", decltype(std::declval()){this}); Backend = nullptr; size_t count{std::accumulate(BufferList.cbegin(), BufferList.cend(), size_t{0u}, [](size_t cur, const BufferSubList &sublist) noexcept -> size_t { return cur + static_cast(POPCNT64(~sublist.FreeMask)); } )}; if(count > 0) WARN("%zu Buffer%s not deleted\n", count, (count==1)?"":"s"); count = std::accumulate(EffectList.cbegin(), EffectList.cend(), size_t{0u}, [](size_t cur, const EffectSubList &sublist) noexcept -> size_t { return cur + static_cast(POPCNT64(~sublist.FreeMask)); } ); if(count > 0) WARN("%zu Effect%s not deleted\n", count, (count==1)?"":"s"); count = std::accumulate(FilterList.cbegin(), FilterList.cend(), size_t{0u}, [](size_t cur, const FilterSubList &sublist) noexcept -> size_t { return cur + static_cast(POPCNT64(~sublist.FreeMask)); } ); if(count > 0) WARN("%zu Filter%s not deleted\n", count, (count==1)?"":"s"); if(mHrtf) mHrtf->DecRef(); mHrtf = nullptr; auto *oldarray = mContexts.exchange(nullptr, std::memory_order_relaxed); if(oldarray != &EmptyContextArray) delete oldarray; } /* VerifyDevice * * Checks if the device handle is valid, and returns a new reference if so. */ static DeviceRef VerifyDevice(ALCdevice *device) { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device); if(iter != DeviceList.cend() && *iter == device) return *iter; return nullptr; } ALCcontext::ALCcontext(al::intrusive_ptr device) : mDevice{std::move(device)} { mPropsClean.test_and_set(std::memory_order_relaxed); } ALCcontext::~ALCcontext() { TRACE("Freeing context %p\n", decltype(std::declval()){this}); size_t count{0}; ALcontextProps *cprops{mUpdate.exchange(nullptr, std::memory_order_relaxed)}; if(cprops) { ++count; delete cprops; } cprops = mFreeContextProps.exchange(nullptr, std::memory_order_acquire); while(cprops) { ALcontextProps *next{cprops->next.load(std::memory_order_relaxed)}; delete cprops; cprops = next; ++count; } TRACE("Freed %zu context property object%s\n", count, (count==1)?"":"s"); count = std::accumulate(mSourceList.cbegin(), mSourceList.cend(), size_t{0u}, [](size_t cur, const SourceSubList &sublist) noexcept -> size_t { return cur + static_cast(POPCNT64(~sublist.FreeMask)); } ); if(count > 0) WARN("%zu Source%s not deleted\n", count, (count==1)?"":"s"); mSourceList.clear(); mNumSources = 0; count = 0; ALeffectslotProps *eprops{mFreeEffectslotProps.exchange(nullptr, std::memory_order_acquire)}; while(eprops) { ALeffectslotProps *next{eprops->next.load(std::memory_order_relaxed)}; if(eprops->State) eprops->State->release(); delete eprops; eprops = next; ++count; } TRACE("Freed %zu AuxiliaryEffectSlot property object%s\n", count, (count==1)?"":"s"); delete mActiveAuxSlots.exchange(nullptr, std::memory_order_relaxed); mDefaultSlot = nullptr; count = std::accumulate(mEffectSlotList.cbegin(), mEffectSlotList.cend(), size_t{0u}, [](size_t cur, const EffectSlotSubList &sublist) noexcept -> size_t { return cur + static_cast(POPCNT64(~sublist.FreeMask)); } ); if(count > 0) WARN("%zu AuxiliaryEffectSlot%s not deleted\n", count, (count==1)?"":"s"); mEffectSlotList.clear(); mNumEffectSlots = 0; count = 0; ALvoiceProps *vprops{mFreeVoiceProps.exchange(nullptr, std::memory_order_acquire)}; while(vprops) { ALvoiceProps *next{vprops->next.load(std::memory_order_relaxed)}; delete vprops; vprops = next; ++count; } TRACE("Freed %zu voice property object%s\n", count, (count==1)?"":"s"); mVoices.clear(); count = 0; ALlistenerProps *lprops{mListener.Params.Update.exchange(nullptr, std::memory_order_relaxed)}; if(lprops) { ++count; delete lprops; } lprops = mFreeListenerProps.exchange(nullptr, std::memory_order_acquire); while(lprops) { ALlistenerProps *next{lprops->next.load(std::memory_order_relaxed)}; delete lprops; lprops = next; ++count; } TRACE("Freed %zu listener property object%s\n", count, (count==1)?"":"s"); if(mAsyncEvents) { count = 0; auto evt_vec = mAsyncEvents->getReadVector(); if(evt_vec.first.len > 0) { al::destroy_n(reinterpret_cast(evt_vec.first.buf), evt_vec.first.len); count += evt_vec.first.len; } if(evt_vec.second.len > 0) { al::destroy_n(reinterpret_cast(evt_vec.second.buf), evt_vec.second.len); count += evt_vec.second.len; } if(count > 0) TRACE("Destructed %zu orphaned event%s\n", count, (count==1)?"":"s"); mAsyncEvents->readAdvance(count); } } void ALCcontext::init() { if(DefaultEffect.type != AL_EFFECT_NULL && mDevice->Type == Playback) { mDefaultSlot = std::unique_ptr{new ALeffectslot{}}; if(InitEffectSlot(mDefaultSlot.get()) == AL_NO_ERROR) aluInitEffectPanning(mDefaultSlot.get(), mDevice.get()); else { mDefaultSlot = nullptr; ERR("Failed to initialize the default effect slot\n"); } } ALeffectslotArray *auxslots; if(!mDefaultSlot) auxslots = ALeffectslot::CreatePtrArray(0); else { auxslots = ALeffectslot::CreatePtrArray(1); (*auxslots)[0] = mDefaultSlot.get(); } mActiveAuxSlots.store(auxslots, std::memory_order_relaxed); mExtensionList = alExtList; mListener.Params.Matrix = alu::Matrix::Identity(); mListener.Params.Velocity = alu::Vector{}; mListener.Params.Gain = mListener.Gain; mListener.Params.MetersPerUnit = mListener.mMetersPerUnit; mListener.Params.DopplerFactor = mDopplerFactor; mListener.Params.SpeedOfSound = mSpeedOfSound * mDopplerVelocity; mListener.Params.SourceDistanceModel = mSourceDistanceModel; mListener.Params.mDistanceModel = mDistanceModel; mAsyncEvents = CreateRingBuffer(511, sizeof(AsyncEvent), false); StartEventThrd(this); mVoices.reserve(256); mVoices.resize(64); } bool ALCcontext::deinit() { if(LocalContext.get() == this) { WARN("%p released while current on thread\n", decltype(std::declval()){this}); LocalContext.set(nullptr); release(); } ALCcontext *origctx{this}; if(GlobalContext.compare_exchange_strong(origctx, nullptr)) release(); bool ret{}; /* First make sure this context exists in the device's list. */ auto *oldarray = mDevice->mContexts.load(std::memory_order_acquire); if(auto toremove = static_cast(std::count(oldarray->begin(), oldarray->end(), this))) { using ContextArray = al::FlexArray; auto alloc_ctx_array = [](const size_t count) -> ContextArray* { if(count == 0) return &EmptyContextArray; return ContextArray::Create(count).release(); }; auto *newarray = alloc_ctx_array(oldarray->size() - toremove); /* Copy the current/old context handles to the new array, excluding the * given context. */ std::copy_if(oldarray->begin(), oldarray->end(), newarray->begin(), std::bind(std::not_equal_to{}, _1, this)); /* Store the new context array in the device. Wait for any current mix * to finish before deleting the old array. */ mDevice->mContexts.store(newarray); if(oldarray != &EmptyContextArray) { while((mDevice->MixCount.load(std::memory_order_acquire)&1)) std::this_thread::yield(); delete oldarray; } ret = !newarray->empty(); } else ret = !oldarray->empty(); StopEventThrd(this); return ret; } /* VerifyContext * * Checks if the given context is valid, returning a new reference to it if so. */ static ContextRef VerifyContext(ALCcontext *context) { std::lock_guard _{ListLock}; auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context); if(iter != ContextList.cend() && *iter == context) return *iter; return nullptr; } /* GetContextRef * * Returns a new reference to the currently active context for this thread. */ ContextRef GetContextRef(void) { ALCcontext *context{LocalContext.get()}; if(context) context->add_ref(); else { std::lock_guard _{ListLock}; context = GlobalContext.load(std::memory_order_acquire); if(context) context->add_ref(); } return ContextRef{context}; } /************************************************ * Standard ALC functions ************************************************/ /* alcGetError * * Return last ALC generated error code for the given device */ ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(dev) return dev->LastError.exchange(ALC_NO_ERROR); return LastNullDeviceError.exchange(ALC_NO_ERROR); } END_API_FUNC /* alcSuspendContext * * Suspends updates for the given context */ ALC_API ALCvoid ALC_APIENTRY alcSuspendContext(ALCcontext *context) START_API_FUNC { if(!SuspendDefers) return; ContextRef ctx{VerifyContext(context)}; if(!ctx) alcSetError(nullptr, ALC_INVALID_CONTEXT); else ctx->deferUpdates(); } END_API_FUNC /* alcProcessContext * * Resumes processing updates for the given context */ ALC_API ALCvoid ALC_APIENTRY alcProcessContext(ALCcontext *context) START_API_FUNC { if(!SuspendDefers) return; ContextRef ctx{VerifyContext(context)}; if(!ctx) alcSetError(nullptr, ALC_INVALID_CONTEXT); else ctx->processUpdates(); } END_API_FUNC /* alcGetString * * Returns information about the device, and error strings */ ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param) START_API_FUNC { const ALCchar *value = nullptr; switch(param) { case ALC_NO_ERROR: value = alcNoError; break; case ALC_INVALID_ENUM: value = alcErrInvalidEnum; break; case ALC_INVALID_VALUE: value = alcErrInvalidValue; break; case ALC_INVALID_DEVICE: value = alcErrInvalidDevice; break; case ALC_INVALID_CONTEXT: value = alcErrInvalidContext; break; case ALC_OUT_OF_MEMORY: value = alcErrOutOfMemory; break; case ALC_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_ALL_DEVICES_SPECIFIER: if(DeviceRef dev{VerifyDevice(Device)}) value = dev->DeviceName.c_str(); else { ProbeAllDevicesList(); value = alcAllDevicesList.c_str(); } break; case ALC_CAPTURE_DEVICE_SPECIFIER: if(DeviceRef dev{VerifyDevice(Device)}) value = dev->DeviceName.c_str(); else { ProbeCaptureDeviceList(); value = alcCaptureDeviceList.c_str(); } break; /* Default devices are always first in the list */ case ALC_DEFAULT_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_DEFAULT_ALL_DEVICES_SPECIFIER: if(alcAllDevicesList.empty()) ProbeAllDevicesList(); /* Copy first entry as default. */ alcDefaultAllDevicesSpecifier = alcAllDevicesList.c_str(); value = alcDefaultAllDevicesSpecifier.c_str(); break; case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER: if(alcCaptureDeviceList.empty()) ProbeCaptureDeviceList(); /* Copy first entry as default. */ alcCaptureDefaultDeviceSpecifier = alcCaptureDeviceList.c_str(); value = alcCaptureDefaultDeviceSpecifier.c_str(); break; case ALC_EXTENSIONS: if(VerifyDevice(Device)) value = alcExtensionList; else value = alcNoDeviceExtList; break; case ALC_HRTF_SPECIFIER_SOFT: if(DeviceRef dev{VerifyDevice(Device)}) { std::lock_guard _{dev->StateLock}; value = (dev->mHrtf ? dev->HrtfName.c_str() : ""); } else alcSetError(nullptr, ALC_INVALID_DEVICE); break; default: alcSetError(VerifyDevice(Device).get(), ALC_INVALID_ENUM); break; } return value; } END_API_FUNC static inline ALCsizei NumAttrsForDevice(ALCdevice *device) { if(device->Type == Capture) return 9; if(device->Type != Loopback) return 29; if(device->FmtChans == DevFmtAmbi3D) return 35; return 29; } static size_t GetIntegerv(ALCdevice *device, ALCenum param, const al::span values) { size_t i; if(values.empty()) { alcSetError(device, ALC_INVALID_VALUE); return 0; } if(!device) { switch(param) { case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_ATTRIBUTES_SIZE: case ALC_ALL_ATTRIBUTES: case ALC_FREQUENCY: case ALC_REFRESH: case ALC_SYNC: case ALC_MONO_SOURCES: case ALC_STEREO_SOURCES: case ALC_CAPTURE_SAMPLES: case ALC_FORMAT_CHANNELS_SOFT: case ALC_FORMAT_TYPE_SOFT: case ALC_AMBISONIC_LAYOUT_SOFT: case ALC_AMBISONIC_SCALING_SOFT: case ALC_AMBISONIC_ORDER_SOFT: case ALC_MAX_AMBISONIC_ORDER_SOFT: alcSetError(nullptr, ALC_INVALID_DEVICE); return 0; default: alcSetError(nullptr, ALC_INVALID_ENUM); return 0; } return 0; } if(device->Type == Capture) { switch(param) { case ALC_ATTRIBUTES_SIZE: values[0] = NumAttrsForDevice(device); return 1; case ALC_ALL_ATTRIBUTES: i = 0; if(values.size() < static_cast(NumAttrsForDevice(device))) alcSetError(device, ALC_INVALID_VALUE); else { std::lock_guard _{device->StateLock}; values[i++] = ALC_MAJOR_VERSION; values[i++] = alcMajorVersion; values[i++] = ALC_MINOR_VERSION; values[i++] = alcMinorVersion; values[i++] = ALC_CAPTURE_SAMPLES; values[i++] = static_cast(device->Backend->availableSamples()); values[i++] = ALC_CONNECTED; values[i++] = device->Connected.load(std::memory_order_relaxed); values[i++] = 0; } return i; case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_CAPTURE_SAMPLES: { std::lock_guard _{device->StateLock}; values[0] = static_cast(device->Backend->availableSamples()); } return 1; case ALC_CONNECTED: { std::lock_guard _{device->StateLock}; values[0] = device->Connected.load(std::memory_order_acquire); } return 1; default: alcSetError(device, ALC_INVALID_ENUM); } return 0; } /* render device */ switch(param) { case ALC_ATTRIBUTES_SIZE: values[0] = NumAttrsForDevice(device); return 1; case ALC_ALL_ATTRIBUTES: i = 0; if(values.size() < static_cast(NumAttrsForDevice(device))) alcSetError(device, ALC_INVALID_VALUE); else { std::lock_guard _{device->StateLock}; values[i++] = ALC_MAJOR_VERSION; values[i++] = alcMajorVersion; values[i++] = ALC_MINOR_VERSION; values[i++] = alcMinorVersion; values[i++] = ALC_EFX_MAJOR_VERSION; values[i++] = alcEFXMajorVersion; values[i++] = ALC_EFX_MINOR_VERSION; values[i++] = alcEFXMinorVersion; values[i++] = ALC_FREQUENCY; values[i++] = static_cast(device->Frequency); if(device->Type != Loopback) { values[i++] = ALC_REFRESH; values[i++] = static_cast(device->Frequency / device->UpdateSize); values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { if(device->FmtChans == DevFmtAmbi3D) { values[i++] = ALC_AMBISONIC_LAYOUT_SOFT; values[i++] = static_cast(device->mAmbiLayout); values[i++] = ALC_AMBISONIC_SCALING_SOFT; values[i++] = static_cast(device->mAmbiScale); values[i++] = ALC_AMBISONIC_ORDER_SOFT; values[i++] = static_cast(device->mAmbiOrder); } values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = device->FmtChans; values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = device->FmtType; } values[i++] = ALC_MONO_SOURCES; values[i++] = static_cast(device->NumMonoSources); values[i++] = ALC_STEREO_SOURCES; values[i++] = static_cast(device->NumStereoSources); values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = static_cast(device->NumAuxSends); values[i++] = ALC_HRTF_SOFT; values[i++] = (device->mHrtf ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = device->HrtfStatus; values[i++] = ALC_OUTPUT_LIMITER_SOFT; values[i++] = device->Limiter ? ALC_TRUE : ALC_FALSE; values[i++] = ALC_MAX_AMBISONIC_ORDER_SOFT; values[i++] = MAX_AMBI_ORDER; values[i++] = 0; } return i; case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_EFX_MAJOR_VERSION: values[0] = alcEFXMajorVersion; return 1; case ALC_EFX_MINOR_VERSION: values[0] = alcEFXMinorVersion; return 1; case ALC_FREQUENCY: values[0] = static_cast(device->Frequency); return 1; case ALC_REFRESH: if(device->Type == Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } { std::lock_guard _{device->StateLock}; values[0] = static_cast(device->Frequency / device->UpdateSize); } return 1; case ALC_SYNC: if(device->Type == Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = ALC_FALSE; return 1; case ALC_FORMAT_CHANNELS_SOFT: if(device->Type != Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = device->FmtChans; return 1; case ALC_FORMAT_TYPE_SOFT: if(device->Type != Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = device->FmtType; return 1; case ALC_AMBISONIC_LAYOUT_SOFT: if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = static_cast(device->mAmbiLayout); return 1; case ALC_AMBISONIC_SCALING_SOFT: if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = static_cast(device->mAmbiScale); return 1; case ALC_AMBISONIC_ORDER_SOFT: if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = static_cast(device->mAmbiOrder); return 1; case ALC_MONO_SOURCES: values[0] = static_cast(device->NumMonoSources); return 1; case ALC_STEREO_SOURCES: values[0] = static_cast(device->NumStereoSources); return 1; case ALC_MAX_AUXILIARY_SENDS: values[0] = static_cast(device->NumAuxSends); return 1; case ALC_CONNECTED: { std::lock_guard _{device->StateLock}; values[0] = device->Connected.load(std::memory_order_acquire); } return 1; case ALC_HRTF_SOFT: values[0] = (device->mHrtf ? ALC_TRUE : ALC_FALSE); return 1; case ALC_HRTF_STATUS_SOFT: values[0] = device->HrtfStatus; return 1; case ALC_NUM_HRTF_SPECIFIERS_SOFT: { std::lock_guard _{device->StateLock}; device->HrtfList = EnumerateHrtf(device->DeviceName.c_str()); values[0] = static_cast(minz(device->HrtfList.size(), std::numeric_limits::max())); } return 1; case ALC_OUTPUT_LIMITER_SOFT: values[0] = device->Limiter ? ALC_TRUE : ALC_FALSE; return 1; case ALC_MAX_AMBISONIC_ORDER_SOFT: values[0] = MAX_AMBI_ORDER; return 1; default: alcSetError(device, ALC_INVALID_ENUM); } return 0; } /* alcGetIntegerv * * Returns information about the device and the version of OpenAL */ ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(size <= 0 || values == nullptr) alcSetError(dev.get(), ALC_INVALID_VALUE); else GetIntegerv(dev.get(), param, {values, values+size}); } END_API_FUNC ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(size <= 0 || values == nullptr) alcSetError(dev.get(), ALC_INVALID_VALUE); else if(!dev || dev->Type == Capture) { auto ivals = al::vector(static_cast(size)); size_t got{GetIntegerv(dev.get(), pname, {ivals.data(), ivals.size()})}; std::copy_n(ivals.begin(), got, values); return; } /* render device */ switch(pname) { case ALC_ATTRIBUTES_SIZE: *values = NumAttrsForDevice(dev.get())+4; break; case ALC_ALL_ATTRIBUTES: if(size < NumAttrsForDevice(dev.get())+4) alcSetError(dev.get(), ALC_INVALID_VALUE); else { size_t i{0}; std::lock_guard _{dev->StateLock}; values[i++] = ALC_FREQUENCY; values[i++] = dev->Frequency; if(dev->Type != Loopback) { values[i++] = ALC_REFRESH; values[i++] = dev->Frequency / dev->UpdateSize; values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { if(dev->FmtChans == DevFmtAmbi3D) { values[i++] = ALC_AMBISONIC_LAYOUT_SOFT; values[i++] = static_cast(dev->mAmbiLayout); values[i++] = ALC_AMBISONIC_SCALING_SOFT; values[i++] = static_cast(dev->mAmbiScale); values[i++] = ALC_AMBISONIC_ORDER_SOFT; values[i++] = dev->mAmbiOrder; } values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = dev->FmtChans; values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = dev->FmtType; } values[i++] = ALC_MONO_SOURCES; values[i++] = dev->NumMonoSources; values[i++] = ALC_STEREO_SOURCES; values[i++] = dev->NumStereoSources; values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = dev->NumAuxSends; values[i++] = ALC_HRTF_SOFT; values[i++] = (dev->mHrtf ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = dev->HrtfStatus; values[i++] = ALC_OUTPUT_LIMITER_SOFT; values[i++] = dev->Limiter ? ALC_TRUE : ALC_FALSE; ClockLatency clock{GetClockLatency(dev.get())}; values[i++] = ALC_DEVICE_CLOCK_SOFT; values[i++] = clock.ClockTime.count(); values[i++] = ALC_DEVICE_LATENCY_SOFT; values[i++] = clock.Latency.count(); values[i++] = 0; } break; case ALC_DEVICE_CLOCK_SOFT: { std::lock_guard _{dev->StateLock}; nanoseconds basecount; ALuint samplecount; ALuint refcount; do { while(((refcount=ReadRef(dev->MixCount))&1) != 0) std::this_thread::yield(); basecount = dev->ClockBase; samplecount = dev->SamplesDone; } while(refcount != ReadRef(dev->MixCount)); basecount += nanoseconds{seconds{samplecount}} / dev->Frequency; *values = basecount.count(); } break; case ALC_DEVICE_LATENCY_SOFT: { std::lock_guard _{dev->StateLock}; ClockLatency clock{GetClockLatency(dev.get())}; *values = clock.Latency.count(); } break; case ALC_DEVICE_CLOCK_LATENCY_SOFT: if(size < 2) alcSetError(dev.get(), ALC_INVALID_VALUE); else { std::lock_guard _{dev->StateLock}; ClockLatency clock{GetClockLatency(dev.get())}; values[0] = clock.ClockTime.count(); values[1] = clock.Latency.count(); } break; default: auto ivals = al::vector(static_cast(size)); size_t got{GetIntegerv(dev.get(), pname, {ivals.data(), ivals.size()})}; std::copy_n(ivals.begin(), got, values); break; } } END_API_FUNC /* alcIsExtensionPresent * * Determines if there is support for a particular extension */ ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!extName) alcSetError(dev.get(), ALC_INVALID_VALUE); else { size_t len = strlen(extName); const char *ptr = (dev ? alcExtensionList : alcNoDeviceExtList); while(ptr && *ptr) { if(al::strncasecmp(ptr, extName, len) == 0 && (ptr[len] == '\0' || isspace(ptr[len]))) return ALC_TRUE; if((ptr=strchr(ptr, ' ')) != nullptr) { do { ++ptr; } while(isspace(*ptr)); } } } return ALC_FALSE; } END_API_FUNC /* alcGetProcAddress * * Retrieves the function address for a particular extension function */ ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName) START_API_FUNC { if(!funcName) { DeviceRef dev{VerifyDevice(device)}; alcSetError(dev.get(), ALC_INVALID_VALUE); } else { for(const auto &func : alcFunctions) { if(strcmp(func.funcName, funcName) == 0) return func.address; } } return nullptr; } END_API_FUNC /* alcGetEnumValue * * Get the value for a particular ALC enumeration name */ ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName) START_API_FUNC { if(!enumName) { DeviceRef dev{VerifyDevice(device)}; alcSetError(dev.get(), ALC_INVALID_VALUE); } else { for(const auto &enm : alcEnumerations) { if(strcmp(enm.enumName, enumName) == 0) return enm.value; } } return 0; } END_API_FUNC /* alcCreateContext * * Create and attach a context to the given device. */ ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList) START_API_FUNC { /* Explicitly hold the list lock while taking the StateLock in case the * device is asynchronously destroyed, to ensure this new context is * properly cleaned up after being made. */ std::unique_lock listlock{ListLock}; DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == Capture || !dev->Connected.load(std::memory_order_relaxed)) { listlock.unlock(); alcSetError(dev.get(), ALC_INVALID_DEVICE); return nullptr; } std::unique_lock statelock{dev->StateLock}; listlock.unlock(); dev->LastError.store(ALC_NO_ERROR); ALCenum err{UpdateDeviceParams(dev.get(), attrList)}; if(err != ALC_NO_ERROR) { alcSetError(dev.get(), err); if(err == ALC_INVALID_DEVICE) aluHandleDisconnect(dev.get(), "Device update failure"); return nullptr; } ContextRef context{new ALCcontext{dev}}; context->init(); if(auto volopt = ConfigValueFloat(dev->DeviceName.c_str(), nullptr, "volume-adjust")) { const ALfloat valf{*volopt}; if(!std::isfinite(valf)) ERR("volume-adjust must be finite: %f\n", valf); else { const ALfloat db{clampf(valf, -24.0f, 24.0f)}; if(db != valf) WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f); context->mGainBoost = std::pow(10.0f, db/20.0f); TRACE("volume-adjust gain: %f\n", context->mGainBoost); } } UpdateListenerProps(context.get()); { using ContextArray = al::FlexArray; /* Allocate a new context array, which holds 1 more than the current/ * old array. */ auto *oldarray = device->mContexts.load(); const size_t newcount{oldarray->size()+1}; std::unique_ptr newarray{ContextArray::Create(newcount)}; /* Copy the current/old context handles to the new array, appending the * new context. */ auto iter = std::copy(oldarray->begin(), oldarray->end(), newarray->begin()); *iter = context.get(); /* Store the new context array in the device. Wait for any current mix * to finish before deleting the old array. */ dev->mContexts.store(newarray.release()); if(oldarray != &EmptyContextArray) { while((dev->MixCount.load(std::memory_order_acquire)&1)) std::this_thread::yield(); delete oldarray; } } statelock.unlock(); { std::lock_guard _{ListLock}; auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context.get()); ContextList.emplace(iter, context); } if(context->mDefaultSlot) { if(InitializeEffect(context.get(), context->mDefaultSlot.get(), &DefaultEffect) == AL_NO_ERROR) UpdateEffectSlotProps(context->mDefaultSlot.get(), context.get()); else ERR("Failed to initialize the default effect\n"); } TRACE("Created context %p\n", decltype(std::declval()){context.get()}); return context.get(); } END_API_FUNC /* alcDestroyContext * * Remove a context from its device */ ALC_API ALCvoid ALC_APIENTRY alcDestroyContext(ALCcontext *context) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context); if(iter == ContextList.end() || *iter != context) { listlock.unlock(); alcSetError(nullptr, ALC_INVALID_CONTEXT); return; } /* Hold an extra reference to this context so it remains valid until the * ListLock is released. */ ContextRef ctx{std::move(*iter)}; ContextList.erase(iter); ALCdevice *Device{ctx->mDevice.get()}; std::lock_guard _{Device->StateLock}; if(!ctx->deinit() && Device->Flags.get()) { Device->Backend->stop(); Device->Flags.unset(); } } END_API_FUNC /* alcGetCurrentContext * * Returns the currently active context on the calling thread */ ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void) START_API_FUNC { ALCcontext *Context{LocalContext.get()}; if(!Context) Context = GlobalContext.load(); return Context; } END_API_FUNC /* alcGetThreadContext * * Returns the currently active thread-local context */ ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void) START_API_FUNC { return LocalContext.get(); } END_API_FUNC /* alcMakeContextCurrent * * Makes the given context the active process-wide context, and removes the * thread-local context for the calling thread. */ ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context) START_API_FUNC { /* context must be valid or nullptr */ ContextRef ctx; if(context) { ctx = VerifyContext(context); if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return ALC_FALSE; } } /* Release this reference (if any) to store it in the GlobalContext * pointer. Take ownership of the reference (if any) that was previously * stored there. */ ctx = ContextRef{GlobalContext.exchange(ctx.release())}; /* Reset (decrement) the previous global reference by replacing it with the * thread-local context. Take ownership of the thread-local context * reference (if any), clearing the storage to null. */ ctx = ContextRef{LocalContext.get()}; if(ctx) LocalContext.set(nullptr); /* Reset (decrement) the previous thread-local reference. */ return ALC_TRUE; } END_API_FUNC /* alcSetThreadContext * * Makes the given context the active context for the current thread */ ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context) START_API_FUNC { /* context must be valid or nullptr */ ContextRef ctx; if(context) { ctx = VerifyContext(context); if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return ALC_FALSE; } } /* context's reference count is already incremented */ ContextRef old{LocalContext.get()}; LocalContext.set(ctx.release()); return ALC_TRUE; } END_API_FUNC /* alcGetContextsDevice * * Returns the device that a particular context is attached to */ ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context) START_API_FUNC { ContextRef ctx{VerifyContext(Context)}; if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return nullptr; } return ctx->mDevice.get(); } END_API_FUNC /* alcOpenDevice * * Opens the named device. */ ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) START_API_FUNC { DO_INITCONFIG(); if(!PlaybackFactory) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(deviceName) { if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0 #ifdef _WIN32 /* Some old Windows apps hardcode these expecting OpenAL to use a * specific audio API, even when they're not enumerated. Creative's * router effectively ignores them too. */ || al::strcasecmp(deviceName, "DirectSound3D") == 0 || al::strcasecmp(deviceName, "DirectSound") == 0 || al::strcasecmp(deviceName, "MMSYSTEM") == 0 #endif || al::strcasecmp(deviceName, "openal-soft") == 0) deviceName = nullptr; } DeviceRef device{new ALCdevice{Playback}}; /* Set output format */ device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; device->Frequency = DEFAULT_OUTPUT_RATE; device->UpdateSize = DEFAULT_UPDATE_SIZE; device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 64; device->NumAuxSends = DEFAULT_SENDS; try { auto backend = PlaybackFactory->createBackend(device.get(), BackendType::Playback); backend->open(deviceName); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open playback device: %s\n", e.what()); alcSetError(nullptr, e.errorCode()); return nullptr; } deviceName = device->DeviceName.c_str(); if(auto chanopt = ConfigValueStr(deviceName, nullptr, "channels")) { static constexpr struct ChannelMap { const char name[16]; DevFmtChannels chans; ALuint order; } chanlist[] = { { "mono", DevFmtMono, 0 }, { "stereo", DevFmtStereo, 0 }, { "quad", DevFmtQuad, 0 }, { "surround51", DevFmtX51, 0 }, { "surround61", DevFmtX61, 0 }, { "surround71", DevFmtX71, 0 }, { "surround51rear", DevFmtX51Rear, 0 }, { "ambi1", DevFmtAmbi3D, 1 }, { "ambi2", DevFmtAmbi3D, 2 }, { "ambi3", DevFmtAmbi3D, 3 }, }; const ALCchar *fmt{chanopt->c_str()}; auto iter = std::find_if(std::begin(chanlist), std::end(chanlist), [fmt](const ChannelMap &entry) -> bool { return al::strcasecmp(entry.name, fmt) == 0; } ); if(iter == std::end(chanlist)) ERR("Unsupported channels: %s\n", fmt); else { device->FmtChans = iter->chans; device->mAmbiOrder = iter->order; device->Flags.set(); } } if(auto typeopt = ConfigValueStr(deviceName, nullptr, "sample-type")) { static constexpr struct TypeMap { const char name[16]; DevFmtType type; } typelist[] = { { "int8", DevFmtByte }, { "uint8", DevFmtUByte }, { "int16", DevFmtShort }, { "uint16", DevFmtUShort }, { "int32", DevFmtInt }, { "uint32", DevFmtUInt }, { "float32", DevFmtFloat }, }; const ALCchar *fmt{typeopt->c_str()}; auto iter = std::find_if(std::begin(typelist), std::end(typelist), [fmt](const TypeMap &entry) -> bool { return al::strcasecmp(entry.name, fmt) == 0; } ); if(iter == std::end(typelist)) ERR("Unsupported sample-type: %s\n", fmt); else { device->FmtType = iter->type; device->Flags.set(); } } if(ALuint freq{ConfigValueUInt(deviceName, nullptr, "frequency").value_or(0)}) { if(freq < MIN_OUTPUT_RATE) { ERR("%uhz request clamped to %uhz minimum\n", freq, MIN_OUTPUT_RATE); freq = MIN_OUTPUT_RATE; } device->UpdateSize = (device->UpdateSize*freq + device->Frequency/2) / device->Frequency; device->BufferSize = (device->BufferSize*freq + device->Frequency/2) / device->Frequency; device->Frequency = freq; device->Flags.set(); } if(auto persizeopt = ConfigValueUInt(deviceName, nullptr, "period_size")) device->UpdateSize = clampu(*persizeopt, 64, 8192); if(auto peropt = ConfigValueUInt(deviceName, nullptr, "periods")) device->BufferSize = device->UpdateSize * clampu(*peropt, 2, 16); else device->BufferSize = maxu(device->BufferSize, device->UpdateSize*2); if(auto srcsopt = ConfigValueUInt(deviceName, nullptr, "sources")) { if(*srcsopt > 0) device->SourcesMax = *srcsopt; } if(auto slotsopt = ConfigValueUInt(deviceName, nullptr, "slots")) { if(*slotsopt > 0) device->AuxiliaryEffectSlotMax = minu(*slotsopt, INT_MAX); } if(auto sendsopt = ConfigValueInt(deviceName, nullptr, "sends")) device->NumAuxSends = clampu(DEFAULT_SENDS, 0, static_cast(clampi(*sendsopt, 0, MAX_SENDS))); device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; if(auto ambiopt = ConfigValueStr(deviceName, nullptr, "ambi-format")) { const ALCchar *fmt{ambiopt->c_str()}; if(al::strcasecmp(fmt, "fuma") == 0) { if(device->mAmbiOrder > 3) ERR("FuMa is incompatible with %d%s order ambisonics (up to third-order only)\n", device->mAmbiOrder, (((device->mAmbiOrder%100)/10) == 1) ? "th" : ((device->mAmbiOrder%10) == 1) ? "st" : ((device->mAmbiOrder%10) == 2) ? "nd" : ((device->mAmbiOrder%10) == 3) ? "rd" : "th"); else { device->mAmbiLayout = AmbiLayout::FuMa; device->mAmbiScale = AmbiNorm::FuMa; } } else if(al::strcasecmp(fmt, "ambix") == 0 || al::strcasecmp(fmt, "acn+sn3d") == 0) { device->mAmbiLayout = AmbiLayout::ACN; device->mAmbiScale = AmbiNorm::SN3D; } else if(al::strcasecmp(fmt, "acn+n3d") == 0) { device->mAmbiLayout = AmbiLayout::ACN; device->mAmbiScale = AmbiNorm::N3D; } else ERR("Unsupported ambi-format: %s\n", fmt); } { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device); } TRACE("Created device %p, \"%s\"\n", decltype(std::declval()){device.get()}, device->DeviceName.c_str()); return device.get(); } END_API_FUNC /* alcCloseDevice * * Closes the given device. */ ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device); if(iter == DeviceList.end() || *iter != device) { alcSetError(nullptr, ALC_INVALID_DEVICE); return ALC_FALSE; } if((*iter)->Type == Capture) { alcSetError(iter->get(), ALC_INVALID_DEVICE); return ALC_FALSE; } /* Erase the device, and any remaining contexts left on it, from their * respective lists. */ DeviceRef dev{std::move(*iter)}; DeviceList.erase(iter); std::unique_lock statelock{dev->StateLock}; al::vector orphanctxs; for(ALCcontext *ctx : *dev->mContexts.load()) { auto ctxiter = std::lower_bound(ContextList.begin(), ContextList.end(), ctx); if(ctxiter != ContextList.end() && *ctxiter == ctx) { orphanctxs.emplace_back(std::move(*ctxiter)); ContextList.erase(ctxiter); } } listlock.unlock(); for(ContextRef &context : orphanctxs) { WARN("Releasing orphaned context %p\n", decltype(std::declval()){context.get()}); context->deinit(); } orphanctxs.clear(); if(dev->Flags.get()) dev->Backend->stop(); dev->Flags.unset(); return ALC_TRUE; } END_API_FUNC /************************************************ * ALC capture functions ************************************************/ ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples) START_API_FUNC { DO_INITCONFIG(); if(!CaptureFactory) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(samples <= 0) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(deviceName) { if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0 || al::strcasecmp(deviceName, "openal-soft") == 0) deviceName = nullptr; } DeviceRef device{new ALCdevice{Capture}}; auto decompfmt = DecomposeDevFormat(format); if(!decompfmt) { alcSetError(nullptr, ALC_INVALID_ENUM); return nullptr; } device->Frequency = frequency; device->FmtChans = decompfmt->chans; device->FmtType = decompfmt->type; device->Flags.set(); device->UpdateSize = static_cast(samples); device->BufferSize = static_cast(samples); try { TRACE("Capture format: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); auto backend = CaptureFactory->createBackend(device.get(), BackendType::Capture); backend->open(deviceName); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open capture device: %s\n", e.what()); alcSetError(nullptr, e.errorCode()); return nullptr; } { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device); } TRACE("Created capture device %p, \"%s\"\n", decltype(std::declval()){device.get()}, device->DeviceName.c_str()); return device.get(); } END_API_FUNC ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device); if(iter == DeviceList.end() || *iter != device) { alcSetError(nullptr, ALC_INVALID_DEVICE); return ALC_FALSE; } if((*iter)->Type != Capture) { alcSetError(iter->get(), ALC_INVALID_DEVICE); return ALC_FALSE; } DeviceRef dev{std::move(*iter)}; DeviceList.erase(iter); listlock.unlock(); std::lock_guard _{dev->StateLock}; if(dev->Flags.get()) dev->Backend->stop(); dev->Flags.unset(); return ALC_TRUE; } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Capture) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } std::lock_guard _{dev->StateLock}; if(!dev->Connected.load(std::memory_order_acquire)) alcSetError(dev.get(), ALC_INVALID_DEVICE); else if(!dev->Flags.get()) { try { auto backend = dev->Backend.get(); if(!backend->start()) throw al::backend_exception{ALC_INVALID_DEVICE, "Device start failure"}; dev->Flags.set(); } catch(al::backend_exception& e) { aluHandleDisconnect(dev.get(), "%s", e.what()); alcSetError(dev.get(), ALC_INVALID_DEVICE); } } } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Capture) alcSetError(dev.get(), ALC_INVALID_DEVICE); else { std::lock_guard _{dev->StateLock}; if(dev->Flags.get()) dev->Backend->stop(); dev->Flags.unset(); } } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Capture) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } if(samples < 0 || (samples > 0 && buffer == nullptr)) { alcSetError(dev.get(), ALC_INVALID_VALUE); return; } if(samples < 1) return; std::lock_guard _{dev->StateLock}; BackendBase *backend{dev->Backend.get()}; const auto usamples = static_cast(samples); if(usamples > backend->availableSamples()) { alcSetError(dev.get(), ALC_INVALID_VALUE); return; } auto *bbuffer = static_cast(buffer); if(ALCenum err{backend->captureSamples(bbuffer, usamples)}) alcSetError(dev.get(), err); } END_API_FUNC /************************************************ * ALC loopback functions ************************************************/ /* alcLoopbackOpenDeviceSOFT * * Open a loopback device, for manual rendering. */ ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName) START_API_FUNC { DO_INITCONFIG(); /* Make sure the device name, if specified, is us. */ if(deviceName && strcmp(deviceName, alcDefaultName) != 0) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } DeviceRef device{new ALCdevice{Loopback}}; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 64; device->NumAuxSends = DEFAULT_SENDS; //Set output format device->BufferSize = 0; device->UpdateSize = 0; device->Frequency = DEFAULT_OUTPUT_RATE; device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; if(auto srcsopt = ConfigValueUInt(nullptr, nullptr, "sources")) { if(*srcsopt > 0) device->SourcesMax = *srcsopt; } if(auto slotsopt = ConfigValueUInt(nullptr, nullptr, "slots")) { if(*slotsopt > 0) device->AuxiliaryEffectSlotMax = minu(*slotsopt, INT_MAX); } if(auto sendsopt = ConfigValueInt(nullptr, nullptr, "sends")) device->NumAuxSends = clampu(DEFAULT_SENDS, 0, static_cast(clampi(*sendsopt, 0, MAX_SENDS))); device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; try { auto backend = LoopbackBackendFactory::getFactory().createBackend(device.get(), BackendType::Playback); backend->open("Loopback"); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open loopback device: %s\n", e.what()); alcSetError(nullptr, e.errorCode()); return nullptr; } { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device); } TRACE("Created loopback device %p\n", decltype(std::declval()){device.get()}); return device.get(); } END_API_FUNC /* alcIsRenderFormatSupportedSOFT * * Determines if the loopback device supports the given format for rendering. */ ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Loopback) alcSetError(dev.get(), ALC_INVALID_DEVICE); else if(freq <= 0) alcSetError(dev.get(), ALC_INVALID_VALUE); else { if(IsValidALCType(type) && IsValidALCChannels(channels) && freq >= MIN_OUTPUT_RATE) return ALC_TRUE; } return ALC_FALSE; } END_API_FUNC /* alcRenderSamplesSOFT * * Renders some samples into a buffer, using the format last set by the * attributes given to alcCreateContext. */ FORCE_ALIGN ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Loopback) alcSetError(dev.get(), ALC_INVALID_DEVICE); else if(samples < 0 || (samples > 0 && buffer == nullptr)) alcSetError(dev.get(), ALC_INVALID_VALUE); else { BackendLockGuard _{*dev->Backend}; aluMixData(dev.get(), buffer, static_cast(samples)); } } END_API_FUNC /************************************************ * ALC DSP pause/resume functions ************************************************/ /* alcDevicePauseSOFT * * Pause the DSP to stop audio processing. */ ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Playback) alcSetError(dev.get(), ALC_INVALID_DEVICE); else { std::lock_guard _{dev->StateLock}; if(dev->Flags.get()) dev->Backend->stop(); dev->Flags.unset(); dev->Flags.set(); } } END_API_FUNC /* alcDeviceResumeSOFT * * Resume the DSP to restart audio processing. */ ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != Playback) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } std::lock_guard _{dev->StateLock}; if(!dev->Flags.get()) return; dev->Flags.unset(); if(dev->mContexts.load()->empty()) return; try { auto backend = dev->Backend.get(); if(!backend->start()) throw al::backend_exception{ALC_INVALID_DEVICE, "Device start failure"}; dev->Flags.set(); } catch(al::backend_exception& e) { aluHandleDisconnect(dev.get(), "%s", e.what()); alcSetError(dev.get(), ALC_INVALID_DEVICE); } } END_API_FUNC /************************************************ * ALC HRTF functions ************************************************/ /* alcGetStringiSOFT * * Gets a string parameter at the given index. */ ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == Capture) alcSetError(dev.get(), ALC_INVALID_DEVICE); else switch(paramName) { case ALC_HRTF_SPECIFIER_SOFT: if(index >= 0 && static_cast(index) < dev->HrtfList.size()) return dev->HrtfList[static_cast(index)].name.c_str(); alcSetError(dev.get(), ALC_INVALID_VALUE); break; default: alcSetError(dev.get(), ALC_INVALID_ENUM); break; } return nullptr; } END_API_FUNC /* alcResetDeviceSOFT * * Resets the given device output, using the specified attribute list. */ ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs) START_API_FUNC { std::unique_lock listlock{ListLock}; DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == Capture) { listlock.unlock(); alcSetError(dev.get(), ALC_INVALID_DEVICE); return ALC_FALSE; } std::lock_guard _{dev->StateLock}; listlock.unlock(); /* Force the backend to stop mixing first since we're resetting. Also reset * the connected state so lost devices can attempt recover. */ if(dev->Flags.get()) dev->Backend->stop(); dev->Flags.unset(); device->Connected.store(true); ALCenum err{UpdateDeviceParams(dev.get(), attribs)}; if LIKELY(err == ALC_NO_ERROR) return ALC_TRUE; alcSetError(dev.get(), err); if(err == ALC_INVALID_DEVICE) aluHandleDisconnect(dev.get(), "Device start failure"); return ALC_FALSE; } END_API_FUNC