#ifndef ALU_H #define ALU_H #include #include #include #include #include "alspan.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/devformat.h" struct ALCcontext; struct ALCdevice; struct EffectSlot; struct MixParams; #define MAX_SENDS 6 using MixerFunc = void(*)(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos); extern MixerFunc MixSamples; constexpr float GainMixMax{1000.0f}; /* +60dB */ constexpr float SpeedOfSoundMetersPerSec{343.3f}; constexpr float AirAbsorbGainHF{0.99426f}; /* -0.05dB */ /** Target gain for the reverb decay feedback reaching the decay time. */ constexpr float ReverbDecayGain{0.001f}; /* -60 dB */ enum HrtfRequestMode { Hrtf_Default = 0, Hrtf_Enable = 1, Hrtf_Disable = 2, }; void aluInit(void); void aluInitMixer(void); /* aluInitRenderer * * Set up the appropriate panning method and mixing method given the device * properties. */ void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq, HrtfRequestMode hrtf_userreq); void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context); /** * Calculates ambisonic encoder coefficients using the X, Y, and Z direction * components, which must represent a normalized (unit length) vector, and the * spread is the angular width of the sound (0...tau). * * NOTE: The components use ambisonic coordinates. As a result: * * Ambisonic Y = OpenAL -X * Ambisonic Z = OpenAL Y * Ambisonic X = OpenAL -Z * * The components are ordered such that OpenAL's X, Y, and Z are the first, * second, and third parameters respectively -- simply negate X and Z. */ std::array CalcAmbiCoeffs(const float y, const float z, const float x, const float spread); /** * CalcDirectionCoeffs * * Calculates ambisonic coefficients based on an OpenAL direction vector. The * vector must be normalized (unit length), and the spread is the angular width * of the sound (0...tau). */ inline std::array CalcDirectionCoeffs(const float (&dir)[3], const float spread) { /* Convert from OpenAL coords to Ambisonics. */ return CalcAmbiCoeffs(-dir[0], dir[1], -dir[2], spread); } /** * CalcAngleCoeffs * * Calculates ambisonic coefficients based on azimuth and elevation. The * azimuth and elevation parameters are in radians, going right and up * respectively. */ inline std::array CalcAngleCoeffs(const float azimuth, const float elevation, const float spread) { const float x{-std::sin(azimuth) * std::cos(elevation)}; const float y{ std::sin(elevation)}; const float z{ std::cos(azimuth) * std::cos(elevation)}; return CalcAmbiCoeffs(x, y, z, spread); } /** * ComputePanGains * * Computes panning gains using the given channel decoder coefficients and the * pre-calculated direction or angle coefficients. For B-Format sources, the * coeffs are a 'slice' of a transform matrix for the input channel, used to * scale and orient the sound samples. */ void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain, const al::span gains); /** Helper to set an identity/pass-through panning for ambisonic mixing (3D input). */ template auto SetAmbiPanIdentity(T iter, I count, F func) -> std::enable_if_t::value> { if(count < 1) return; std::array coeffs{{1.0f}}; func(*iter, coeffs); ++iter; for(I i{1};i < count;++i,++iter) { coeffs[i-1] = 0.0f; coeffs[i ] = 1.0f; func(*iter, coeffs); } } extern const float ConeScale; extern const float ZScale; #endif