/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "backends/alsa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "albyte.h" #include "alcmain.h" #include "alconfig.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alu.h" #include "core/logging.h" #include "dynload.h" #include "ringbuffer.h" #include "threads.h" #include "vector.h" #include namespace { constexpr char alsaDevice[] = "ALSA Default"; #ifdef HAVE_DYNLOAD #define ALSA_FUNCS(MAGIC) \ MAGIC(snd_strerror); \ MAGIC(snd_pcm_open); \ MAGIC(snd_pcm_close); \ MAGIC(snd_pcm_nonblock); \ MAGIC(snd_pcm_frames_to_bytes); \ MAGIC(snd_pcm_bytes_to_frames); \ MAGIC(snd_pcm_hw_params_malloc); \ MAGIC(snd_pcm_hw_params_free); \ MAGIC(snd_pcm_hw_params_any); \ MAGIC(snd_pcm_hw_params_current); \ MAGIC(snd_pcm_hw_params_set_access); \ MAGIC(snd_pcm_hw_params_set_format); \ MAGIC(snd_pcm_hw_params_set_channels); \ MAGIC(snd_pcm_hw_params_set_periods_near); \ MAGIC(snd_pcm_hw_params_set_rate_near); \ MAGIC(snd_pcm_hw_params_set_rate); \ MAGIC(snd_pcm_hw_params_set_rate_resample); \ MAGIC(snd_pcm_hw_params_set_buffer_time_near); \ MAGIC(snd_pcm_hw_params_set_period_time_near); \ MAGIC(snd_pcm_hw_params_set_buffer_size_near); \ MAGIC(snd_pcm_hw_params_set_period_size_near); \ MAGIC(snd_pcm_hw_params_set_buffer_size_min); \ MAGIC(snd_pcm_hw_params_get_buffer_time_min); \ MAGIC(snd_pcm_hw_params_get_buffer_time_max); \ MAGIC(snd_pcm_hw_params_get_period_time_min); \ MAGIC(snd_pcm_hw_params_get_period_time_max); \ MAGIC(snd_pcm_hw_params_get_buffer_size); \ MAGIC(snd_pcm_hw_params_get_period_size); \ MAGIC(snd_pcm_hw_params_get_access); \ MAGIC(snd_pcm_hw_params_get_periods); \ MAGIC(snd_pcm_hw_params_test_format); \ MAGIC(snd_pcm_hw_params_test_channels); \ MAGIC(snd_pcm_hw_params); \ MAGIC(snd_pcm_sw_params_malloc); \ MAGIC(snd_pcm_sw_params_current); \ MAGIC(snd_pcm_sw_params_set_avail_min); \ MAGIC(snd_pcm_sw_params_set_stop_threshold); \ MAGIC(snd_pcm_sw_params); \ MAGIC(snd_pcm_sw_params_free); \ MAGIC(snd_pcm_prepare); \ MAGIC(snd_pcm_start); \ MAGIC(snd_pcm_resume); \ MAGIC(snd_pcm_reset); \ MAGIC(snd_pcm_wait); \ MAGIC(snd_pcm_delay); \ MAGIC(snd_pcm_state); \ MAGIC(snd_pcm_avail_update); \ MAGIC(snd_pcm_areas_silence); \ MAGIC(snd_pcm_mmap_begin); \ MAGIC(snd_pcm_mmap_commit); \ MAGIC(snd_pcm_readi); \ MAGIC(snd_pcm_writei); \ MAGIC(snd_pcm_drain); \ MAGIC(snd_pcm_drop); \ MAGIC(snd_pcm_recover); \ MAGIC(snd_pcm_info_malloc); \ MAGIC(snd_pcm_info_free); \ MAGIC(snd_pcm_info_set_device); \ MAGIC(snd_pcm_info_set_subdevice); \ MAGIC(snd_pcm_info_set_stream); \ MAGIC(snd_pcm_info_get_name); \ MAGIC(snd_ctl_pcm_next_device); \ MAGIC(snd_ctl_pcm_info); \ MAGIC(snd_ctl_open); \ MAGIC(snd_ctl_close); \ MAGIC(snd_ctl_card_info_malloc); \ MAGIC(snd_ctl_card_info_free); \ MAGIC(snd_ctl_card_info); \ MAGIC(snd_ctl_card_info_get_name); \ MAGIC(snd_ctl_card_info_get_id); \ MAGIC(snd_card_next); \ MAGIC(snd_config_update_free_global) static void *alsa_handle; #define MAKE_FUNC(f) decltype(f) * p##f ALSA_FUNCS(MAKE_FUNC); #undef MAKE_FUNC #ifndef IN_IDE_PARSER #define snd_strerror psnd_strerror #define snd_pcm_open psnd_pcm_open #define snd_pcm_close psnd_pcm_close #define snd_pcm_nonblock psnd_pcm_nonblock #define snd_pcm_frames_to_bytes psnd_pcm_frames_to_bytes #define snd_pcm_bytes_to_frames psnd_pcm_bytes_to_frames #define snd_pcm_hw_params_malloc psnd_pcm_hw_params_malloc #define snd_pcm_hw_params_free psnd_pcm_hw_params_free #define snd_pcm_hw_params_any psnd_pcm_hw_params_any #define snd_pcm_hw_params_current psnd_pcm_hw_params_current #define snd_pcm_hw_params_set_access psnd_pcm_hw_params_set_access #define snd_pcm_hw_params_set_format psnd_pcm_hw_params_set_format #define snd_pcm_hw_params_set_channels psnd_pcm_hw_params_set_channels #define snd_pcm_hw_params_set_periods_near psnd_pcm_hw_params_set_periods_near #define snd_pcm_hw_params_set_rate_near psnd_pcm_hw_params_set_rate_near #define snd_pcm_hw_params_set_rate psnd_pcm_hw_params_set_rate #define snd_pcm_hw_params_set_rate_resample psnd_pcm_hw_params_set_rate_resample #define snd_pcm_hw_params_set_buffer_time_near psnd_pcm_hw_params_set_buffer_time_near #define snd_pcm_hw_params_set_period_time_near psnd_pcm_hw_params_set_period_time_near #define snd_pcm_hw_params_set_buffer_size_near psnd_pcm_hw_params_set_buffer_size_near #define snd_pcm_hw_params_set_period_size_near psnd_pcm_hw_params_set_period_size_near #define snd_pcm_hw_params_set_buffer_size_min psnd_pcm_hw_params_set_buffer_size_min #define snd_pcm_hw_params_get_buffer_time_min psnd_pcm_hw_params_get_buffer_time_min #define snd_pcm_hw_params_get_buffer_time_max psnd_pcm_hw_params_get_buffer_time_max #define snd_pcm_hw_params_get_period_time_min psnd_pcm_hw_params_get_period_time_min #define snd_pcm_hw_params_get_period_time_max psnd_pcm_hw_params_get_period_time_max #define snd_pcm_hw_params_get_buffer_size psnd_pcm_hw_params_get_buffer_size #define snd_pcm_hw_params_get_period_size psnd_pcm_hw_params_get_period_size #define snd_pcm_hw_params_get_access psnd_pcm_hw_params_get_access #define snd_pcm_hw_params_get_periods psnd_pcm_hw_params_get_periods #define snd_pcm_hw_params_test_format psnd_pcm_hw_params_test_format #define snd_pcm_hw_params_test_channels psnd_pcm_hw_params_test_channels #define snd_pcm_hw_params psnd_pcm_hw_params #define snd_pcm_sw_params_malloc psnd_pcm_sw_params_malloc #define snd_pcm_sw_params_current psnd_pcm_sw_params_current #define snd_pcm_sw_params_set_avail_min psnd_pcm_sw_params_set_avail_min #define snd_pcm_sw_params_set_stop_threshold psnd_pcm_sw_params_set_stop_threshold #define snd_pcm_sw_params psnd_pcm_sw_params #define snd_pcm_sw_params_free psnd_pcm_sw_params_free #define snd_pcm_prepare psnd_pcm_prepare #define snd_pcm_start psnd_pcm_start #define snd_pcm_resume psnd_pcm_resume #define snd_pcm_reset psnd_pcm_reset #define snd_pcm_wait psnd_pcm_wait #define snd_pcm_delay psnd_pcm_delay #define snd_pcm_state psnd_pcm_state #define snd_pcm_avail_update psnd_pcm_avail_update #define snd_pcm_areas_silence psnd_pcm_areas_silence #define snd_pcm_mmap_begin psnd_pcm_mmap_begin #define snd_pcm_mmap_commit psnd_pcm_mmap_commit #define snd_pcm_readi psnd_pcm_readi #define snd_pcm_writei psnd_pcm_writei #define snd_pcm_drain psnd_pcm_drain #define snd_pcm_drop psnd_pcm_drop #define snd_pcm_recover psnd_pcm_recover #define snd_pcm_info_malloc psnd_pcm_info_malloc #define snd_pcm_info_free psnd_pcm_info_free #define snd_pcm_info_set_device psnd_pcm_info_set_device #define snd_pcm_info_set_subdevice psnd_pcm_info_set_subdevice #define snd_pcm_info_set_stream psnd_pcm_info_set_stream #define snd_pcm_info_get_name psnd_pcm_info_get_name #define snd_ctl_pcm_next_device psnd_ctl_pcm_next_device #define snd_ctl_pcm_info psnd_ctl_pcm_info #define snd_ctl_open psnd_ctl_open #define snd_ctl_close psnd_ctl_close #define snd_ctl_card_info_malloc psnd_ctl_card_info_malloc #define snd_ctl_card_info_free psnd_ctl_card_info_free #define snd_ctl_card_info psnd_ctl_card_info #define snd_ctl_card_info_get_name psnd_ctl_card_info_get_name #define snd_ctl_card_info_get_id psnd_ctl_card_info_get_id #define snd_card_next psnd_card_next #define snd_config_update_free_global psnd_config_update_free_global #endif #endif struct HwParamsDeleter { void operator()(snd_pcm_hw_params_t *ptr) { snd_pcm_hw_params_free(ptr); } }; using HwParamsPtr = std::unique_ptr; HwParamsPtr CreateHwParams() { snd_pcm_hw_params_t *hp{}; snd_pcm_hw_params_malloc(&hp); return HwParamsPtr{hp}; } struct SwParamsDeleter { void operator()(snd_pcm_sw_params_t *ptr) { snd_pcm_sw_params_free(ptr); } }; using SwParamsPtr = std::unique_ptr; SwParamsPtr CreateSwParams() { snd_pcm_sw_params_t *sp{}; snd_pcm_sw_params_malloc(&sp); return SwParamsPtr{sp}; } struct DevMap { std::string name; std::string device_name; }; al::vector PlaybackDevices; al::vector CaptureDevices; const char *prefix_name(snd_pcm_stream_t stream) { assert(stream == SND_PCM_STREAM_PLAYBACK || stream == SND_PCM_STREAM_CAPTURE); return (stream==SND_PCM_STREAM_PLAYBACK) ? "device-prefix" : "capture-prefix"; } al::vector probe_devices(snd_pcm_stream_t stream) { al::vector devlist; snd_ctl_card_info_t *info; snd_ctl_card_info_malloc(&info); snd_pcm_info_t *pcminfo; snd_pcm_info_malloc(&pcminfo); devlist.emplace_back(DevMap{alsaDevice, GetConfigValue(nullptr, "alsa", (stream==SND_PCM_STREAM_PLAYBACK) ? "device" : "capture", "default")}); const char *customdevs{GetConfigValue(nullptr, "alsa", (stream == SND_PCM_STREAM_PLAYBACK) ? "custom-devices" : "custom-captures", "")}; while(const char *curdev{customdevs}) { if(!curdev[0]) break; customdevs = strchr(curdev, ';'); const char *sep{strchr(curdev, '=')}; if(!sep) { std::string spec{customdevs ? std::string(curdev, customdevs++) : std::string(curdev)}; ERR("Invalid ALSA device specification \"%s\"\n", spec.c_str()); continue; } const char *oldsep{sep++}; devlist.emplace_back(DevMap{std::string(curdev, oldsep), customdevs ? std::string(sep, customdevs++) : std::string(sep)}); const auto &entry = devlist.back(); TRACE("Got device \"%s\", \"%s\"\n", entry.name.c_str(), entry.device_name.c_str()); } const std::string main_prefix{ ConfigValueStr(nullptr, "alsa", prefix_name(stream)).value_or("plughw:")}; int card{-1}; int err{snd_card_next(&card)}; for(;err >= 0 && card >= 0;err = snd_card_next(&card)) { std::string name{"hw:" + std::to_string(card)}; snd_ctl_t *handle; if((err=snd_ctl_open(&handle, name.c_str(), 0)) < 0) { ERR("control open (hw:%d): %s\n", card, snd_strerror(err)); continue; } if((err=snd_ctl_card_info(handle, info)) < 0) { ERR("control hardware info (hw:%d): %s\n", card, snd_strerror(err)); snd_ctl_close(handle); continue; } const char *cardname{snd_ctl_card_info_get_name(info)}; const char *cardid{snd_ctl_card_info_get_id(info)}; name = prefix_name(stream); name += '-'; name += cardid; const std::string card_prefix{ ConfigValueStr(nullptr, "alsa", name.c_str()).value_or(main_prefix)}; int dev{-1}; while(1) { if(snd_ctl_pcm_next_device(handle, &dev) < 0) ERR("snd_ctl_pcm_next_device failed\n"); if(dev < 0) break; snd_pcm_info_set_device(pcminfo, static_cast(dev)); snd_pcm_info_set_subdevice(pcminfo, 0); snd_pcm_info_set_stream(pcminfo, stream); if((err=snd_ctl_pcm_info(handle, pcminfo)) < 0) { if(err != -ENOENT) ERR("control digital audio info (hw:%d): %s\n", card, snd_strerror(err)); continue; } /* "prefix-cardid-dev" */ name = prefix_name(stream); name += '-'; name += cardid; name += '-'; name += std::to_string(dev); const std::string device_prefix{ ConfigValueStr(nullptr, "alsa", name.c_str()).value_or(card_prefix)}; /* "CardName, PcmName (CARD=cardid,DEV=dev)" */ name = cardname; name += ", "; name += snd_pcm_info_get_name(pcminfo); name += " (CARD="; name += cardid; name += ",DEV="; name += std::to_string(dev); name += ')'; /* "devprefixCARD=cardid,DEV=dev" */ std::string device{device_prefix}; device += "CARD="; device += cardid; device += ",DEV="; device += std::to_string(dev); devlist.emplace_back(DevMap{std::move(name), std::move(device)}); const auto &entry = devlist.back(); TRACE("Got device \"%s\", \"%s\"\n", entry.name.c_str(), entry.device_name.c_str()); } snd_ctl_close(handle); } if(err < 0) ERR("snd_card_next failed: %s\n", snd_strerror(err)); snd_pcm_info_free(pcminfo); snd_ctl_card_info_free(info); return devlist; } int verify_state(snd_pcm_t *handle) { snd_pcm_state_t state{snd_pcm_state(handle)}; int err; switch(state) { case SND_PCM_STATE_OPEN: case SND_PCM_STATE_SETUP: case SND_PCM_STATE_PREPARED: case SND_PCM_STATE_RUNNING: case SND_PCM_STATE_DRAINING: case SND_PCM_STATE_PAUSED: /* All Okay */ break; case SND_PCM_STATE_XRUN: if((err=snd_pcm_recover(handle, -EPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_SUSPENDED: if((err=snd_pcm_recover(handle, -ESTRPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_DISCONNECTED: return -ENODEV; } return state; } struct AlsaPlayback final : public BackendBase { AlsaPlayback(ALCdevice *device) noexcept : BackendBase{device} { } ~AlsaPlayback() override; int mixerProc(); int mixerNoMMapProc(); void open(const char *name) override; bool reset() override; void start() override; void stop() override; ClockLatency getClockLatency() override; snd_pcm_t *mPcmHandle{nullptr}; std::mutex mMutex; al::vector mBuffer; std::atomic mKillNow{true}; std::thread mThread; DEF_NEWDEL(AlsaPlayback) }; AlsaPlayback::~AlsaPlayback() { if(mPcmHandle) snd_pcm_close(mPcmHandle); mPcmHandle = nullptr; } int AlsaPlayback::mixerProc() { SetRTPriority(); althrd_setname(MIXER_THREAD_NAME); const size_t samplebits{mDevice->bytesFromFmt() * 8}; const snd_pcm_uframes_t update_size{mDevice->UpdateSize}; const snd_pcm_uframes_t buffer_size{mDevice->BufferSize}; while(!mKillNow.load(std::memory_order_acquire)) { int state{verify_state(mPcmHandle)}; if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); mDevice->handleDisconnect("Bad state: %s", snd_strerror(state)); break; } snd_pcm_sframes_t avails{snd_pcm_avail_update(mPcmHandle)}; if(avails < 0) { ERR("available update failed: %s\n", snd_strerror(static_cast(avails))); continue; } snd_pcm_uframes_t avail{static_cast(avails)}; if(avail > buffer_size) { WARN("available samples exceeds the buffer size\n"); snd_pcm_reset(mPcmHandle); continue; } // make sure there's frames to process if(avail < update_size) { if(state != SND_PCM_STATE_RUNNING) { int err{snd_pcm_start(mPcmHandle)}; if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); continue; } } if(snd_pcm_wait(mPcmHandle, 1000) == 0) ERR("Wait timeout... buffer size too low?\n"); continue; } avail -= avail%update_size; // it is possible that contiguous areas are smaller, thus we use a loop std::lock_guard _{mMutex}; while(avail > 0) { snd_pcm_uframes_t frames{avail}; const snd_pcm_channel_area_t *areas{}; snd_pcm_uframes_t offset{}; int err{snd_pcm_mmap_begin(mPcmHandle, &areas, &offset, &frames)}; if(err < 0) { ERR("mmap begin error: %s\n", snd_strerror(err)); break; } char *WritePtr{static_cast(areas->addr) + (offset * areas->step / 8)}; mDevice->renderSamples(WritePtr, static_cast(frames), areas->step/samplebits); snd_pcm_sframes_t commitres{snd_pcm_mmap_commit(mPcmHandle, offset, frames)}; if(commitres < 0 || static_cast(commitres) != frames) { ERR("mmap commit error: %s\n", snd_strerror(commitres >= 0 ? -EPIPE : static_cast(commitres))); break; } avail -= frames; } } return 0; } int AlsaPlayback::mixerNoMMapProc() { SetRTPriority(); althrd_setname(MIXER_THREAD_NAME); const size_t frame_step{mDevice->channelsFromFmt()}; const snd_pcm_uframes_t update_size{mDevice->UpdateSize}; const snd_pcm_uframes_t buffer_size{mDevice->BufferSize}; while(!mKillNow.load(std::memory_order_acquire)) { int state{verify_state(mPcmHandle)}; if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); mDevice->handleDisconnect("Bad state: %s", snd_strerror(state)); break; } snd_pcm_sframes_t avail{snd_pcm_avail_update(mPcmHandle)}; if(avail < 0) { ERR("available update failed: %s\n", snd_strerror(static_cast(avail))); continue; } if(static_cast(avail) > buffer_size) { WARN("available samples exceeds the buffer size\n"); snd_pcm_reset(mPcmHandle); continue; } if(static_cast(avail) < update_size) { if(state != SND_PCM_STATE_RUNNING) { int err{snd_pcm_start(mPcmHandle)}; if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); continue; } } if(snd_pcm_wait(mPcmHandle, 1000) == 0) ERR("Wait timeout... buffer size too low?\n"); continue; } al::byte *WritePtr{mBuffer.data()}; avail = snd_pcm_bytes_to_frames(mPcmHandle, static_cast(mBuffer.size())); std::lock_guard _{mMutex}; mDevice->renderSamples(WritePtr, static_cast(avail), frame_step); while(avail > 0) { snd_pcm_sframes_t ret{snd_pcm_writei(mPcmHandle, WritePtr, static_cast(avail))}; switch(ret) { case -EAGAIN: continue; #if ESTRPIPE != EPIPE case -ESTRPIPE: #endif case -EPIPE: case -EINTR: ret = snd_pcm_recover(mPcmHandle, static_cast(ret), 1); if(ret < 0) avail = 0; break; default: if(ret >= 0) { WritePtr += snd_pcm_frames_to_bytes(mPcmHandle, ret); avail -= ret; } break; } if(ret < 0) { ret = snd_pcm_prepare(mPcmHandle); if(ret < 0) break; } } } return 0; } void AlsaPlayback::open(const char *name) { const char *driver{}; if(name) { if(PlaybackDevices.empty()) PlaybackDevices = probe_devices(SND_PCM_STREAM_PLAYBACK); auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == PlaybackDevices.cend()) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found", name}; driver = iter->device_name.c_str(); } else { name = alsaDevice; driver = GetConfigValue(nullptr, "alsa", "device", "default"); } TRACE("Opening device \"%s\"\n", driver); snd_pcm_t *pcmHandle{}; int err{snd_pcm_open(&pcmHandle, driver, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK)}; if(err < 0) throw al::backend_exception{al::backend_error::NoDevice, "Could not open ALSA device \"%s\"", driver}; if(mPcmHandle) snd_pcm_close(mPcmHandle); mPcmHandle = pcmHandle; /* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */ snd_config_update_free_global(); mDevice->DeviceName = name; } bool AlsaPlayback::reset() { snd_pcm_format_t format{SND_PCM_FORMAT_UNKNOWN}; switch(mDevice->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } bool allowmmap{!!GetConfigValueBool(mDevice->DeviceName.c_str(), "alsa", "mmap", 1)}; uint periodLen{static_cast(mDevice->UpdateSize * 1000000_u64 / mDevice->Frequency)}; uint bufferLen{static_cast(mDevice->BufferSize * 1000000_u64 / mDevice->Frequency)}; uint rate{mDevice->Frequency}; int err{}; HwParamsPtr hp{CreateHwParams()}; #define CHECK(x) do { \ if((err=(x)) < 0) \ throw al::backend_exception{al::backend_error::DeviceError, #x " failed: %s", \ snd_strerror(err)}; \ } while(0) CHECK(snd_pcm_hw_params_any(mPcmHandle, hp.get())); /* set interleaved access */ if(!allowmmap || snd_pcm_hw_params_set_access(mPcmHandle, hp.get(), SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0) { /* No mmap */ CHECK(snd_pcm_hw_params_set_access(mPcmHandle, hp.get(), SND_PCM_ACCESS_RW_INTERLEAVED)); } /* test and set format (implicitly sets sample bits) */ if(snd_pcm_hw_params_test_format(mPcmHandle, hp.get(), format) < 0) { static const struct { snd_pcm_format_t format; DevFmtType fmttype; } formatlist[] = { { SND_PCM_FORMAT_FLOAT, DevFmtFloat }, { SND_PCM_FORMAT_S32, DevFmtInt }, { SND_PCM_FORMAT_U32, DevFmtUInt }, { SND_PCM_FORMAT_S16, DevFmtShort }, { SND_PCM_FORMAT_U16, DevFmtUShort }, { SND_PCM_FORMAT_S8, DevFmtByte }, { SND_PCM_FORMAT_U8, DevFmtUByte }, }; for(const auto &fmt : formatlist) { format = fmt.format; if(snd_pcm_hw_params_test_format(mPcmHandle, hp.get(), format) >= 0) { mDevice->FmtType = fmt.fmttype; break; } } } CHECK(snd_pcm_hw_params_set_format(mPcmHandle, hp.get(), format)); /* test and set channels (implicitly sets frame bits) */ if(snd_pcm_hw_params_test_channels(mPcmHandle, hp.get(), mDevice->channelsFromFmt()) < 0) { static const DevFmtChannels channellist[] = { DevFmtStereo, DevFmtQuad, DevFmtX51, DevFmtX71, DevFmtMono, }; for(const auto &chan : channellist) { if(snd_pcm_hw_params_test_channels(mPcmHandle, hp.get(), ChannelsFromDevFmt(chan, 0)) >= 0) { mDevice->FmtChans = chan; mDevice->mAmbiOrder = 0; break; } } } CHECK(snd_pcm_hw_params_set_channels(mPcmHandle, hp.get(), mDevice->channelsFromFmt())); /* set rate (implicitly constrains period/buffer parameters) */ if(!GetConfigValueBool(mDevice->DeviceName.c_str(), "alsa", "allow-resampler", 0) || !mDevice->Flags.test(FrequencyRequest)) { if(snd_pcm_hw_params_set_rate_resample(mPcmHandle, hp.get(), 0) < 0) ERR("Failed to disable ALSA resampler\n"); } else if(snd_pcm_hw_params_set_rate_resample(mPcmHandle, hp.get(), 1) < 0) ERR("Failed to enable ALSA resampler\n"); CHECK(snd_pcm_hw_params_set_rate_near(mPcmHandle, hp.get(), &rate, nullptr)); /* set period time (implicitly constrains period/buffer parameters) */ if((err=snd_pcm_hw_params_set_period_time_near(mPcmHandle, hp.get(), &periodLen, nullptr)) < 0) ERR("snd_pcm_hw_params_set_period_time_near failed: %s\n", snd_strerror(err)); /* set buffer time (implicitly sets buffer size/bytes/time and period size/bytes) */ if((err=snd_pcm_hw_params_set_buffer_time_near(mPcmHandle, hp.get(), &bufferLen, nullptr)) < 0) ERR("snd_pcm_hw_params_set_buffer_time_near failed: %s\n", snd_strerror(err)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(mPcmHandle, hp.get())); /* retrieve configuration info */ snd_pcm_uframes_t periodSizeInFrames{}; snd_pcm_uframes_t bufferSizeInFrames{}; snd_pcm_access_t access{}; CHECK(snd_pcm_hw_params_get_access(hp.get(), &access)); CHECK(snd_pcm_hw_params_get_period_size(hp.get(), &periodSizeInFrames, nullptr)); CHECK(snd_pcm_hw_params_get_buffer_size(hp.get(), &bufferSizeInFrames)); hp = nullptr; SwParamsPtr sp{CreateSwParams()}; CHECK(snd_pcm_sw_params_current(mPcmHandle, sp.get())); CHECK(snd_pcm_sw_params_set_avail_min(mPcmHandle, sp.get(), periodSizeInFrames)); CHECK(snd_pcm_sw_params_set_stop_threshold(mPcmHandle, sp.get(), bufferSizeInFrames)); CHECK(snd_pcm_sw_params(mPcmHandle, sp.get())); #undef CHECK sp = nullptr; mDevice->BufferSize = static_cast(bufferSizeInFrames); mDevice->UpdateSize = static_cast(periodSizeInFrames); mDevice->Frequency = rate; setDefaultChannelOrder(); return true; } void AlsaPlayback::start() { int err{}; snd_pcm_access_t access{}; HwParamsPtr hp{CreateHwParams()}; #define CHECK(x) do { \ if((err=(x)) < 0) \ throw al::backend_exception{al::backend_error::DeviceError, #x " failed: %s", \ snd_strerror(err)}; \ } while(0) CHECK(snd_pcm_hw_params_current(mPcmHandle, hp.get())); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp.get(), &access)); hp = nullptr; int (AlsaPlayback::*thread_func)(){}; if(access == SND_PCM_ACCESS_RW_INTERLEAVED) { mBuffer.resize( static_cast(snd_pcm_frames_to_bytes(mPcmHandle, mDevice->UpdateSize))); thread_func = &AlsaPlayback::mixerNoMMapProc; } else { CHECK(snd_pcm_prepare(mPcmHandle)); thread_func = &AlsaPlayback::mixerProc; } #undef CHECK try { mKillNow.store(false, std::memory_order_release); mThread = std::thread{std::mem_fn(thread_func), this}; } catch(std::exception& e) { throw al::backend_exception{al::backend_error::DeviceError, "Failed to start mixing thread: %s", e.what()}; } } void AlsaPlayback::stop() { if(mKillNow.exchange(true, std::memory_order_acq_rel) || !mThread.joinable()) return; mThread.join(); mBuffer.clear(); int err{snd_pcm_drop(mPcmHandle)}; if(err < 0) ERR("snd_pcm_drop failed: %s\n", snd_strerror(err)); } ClockLatency AlsaPlayback::getClockLatency() { ClockLatency ret; std::lock_guard _{mMutex}; ret.ClockTime = GetDeviceClockTime(mDevice); snd_pcm_sframes_t delay{}; int err{snd_pcm_delay(mPcmHandle, &delay)}; if(err < 0) { ERR("Failed to get pcm delay: %s\n", snd_strerror(err)); delay = 0; } ret.Latency = std::chrono::seconds{std::max(0, delay)}; ret.Latency /= mDevice->Frequency; return ret; } struct AlsaCapture final : public BackendBase { AlsaCapture(ALCdevice *device) noexcept : BackendBase{device} { } ~AlsaCapture() override; void open(const char *name) override; void start() override; void stop() override; void captureSamples(al::byte *buffer, uint samples) override; uint availableSamples() override; ClockLatency getClockLatency() override; snd_pcm_t *mPcmHandle{nullptr}; al::vector mBuffer; bool mDoCapture{false}; RingBufferPtr mRing{nullptr}; snd_pcm_sframes_t mLastAvail{0}; DEF_NEWDEL(AlsaCapture) }; AlsaCapture::~AlsaCapture() { if(mPcmHandle) snd_pcm_close(mPcmHandle); mPcmHandle = nullptr; } void AlsaCapture::open(const char *name) { const char *driver{}; if(name) { if(CaptureDevices.empty()) CaptureDevices = probe_devices(SND_PCM_STREAM_CAPTURE); auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == CaptureDevices.cend()) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found", name}; driver = iter->device_name.c_str(); } else { name = alsaDevice; driver = GetConfigValue(nullptr, "alsa", "capture", "default"); } TRACE("Opening device \"%s\"\n", driver); int err{snd_pcm_open(&mPcmHandle, driver, SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK)}; if(err < 0) throw al::backend_exception{al::backend_error::NoDevice, "Could not open ALSA device \"%s\"", driver}; /* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */ snd_config_update_free_global(); snd_pcm_format_t format{SND_PCM_FORMAT_UNKNOWN}; switch(mDevice->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } snd_pcm_uframes_t bufferSizeInFrames{maxu(mDevice->BufferSize, 100*mDevice->Frequency/1000)}; snd_pcm_uframes_t periodSizeInFrames{minu(mDevice->BufferSize, 25*mDevice->Frequency/1000)}; bool needring{false}; HwParamsPtr hp{CreateHwParams()}; #define CHECK(x) do { \ if((err=(x)) < 0) \ throw al::backend_exception{al::backend_error::DeviceError, #x " failed: %s", \ snd_strerror(err)}; \ } while(0) CHECK(snd_pcm_hw_params_any(mPcmHandle, hp.get())); /* set interleaved access */ CHECK(snd_pcm_hw_params_set_access(mPcmHandle, hp.get(), SND_PCM_ACCESS_RW_INTERLEAVED)); /* set format (implicitly sets sample bits) */ CHECK(snd_pcm_hw_params_set_format(mPcmHandle, hp.get(), format)); /* set channels (implicitly sets frame bits) */ CHECK(snd_pcm_hw_params_set_channels(mPcmHandle, hp.get(), mDevice->channelsFromFmt())); /* set rate (implicitly constrains period/buffer parameters) */ CHECK(snd_pcm_hw_params_set_rate(mPcmHandle, hp.get(), mDevice->Frequency, 0)); /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ if(snd_pcm_hw_params_set_buffer_size_min(mPcmHandle, hp.get(), &bufferSizeInFrames) < 0) { TRACE("Buffer too large, using intermediate ring buffer\n"); needring = true; CHECK(snd_pcm_hw_params_set_buffer_size_near(mPcmHandle, hp.get(), &bufferSizeInFrames)); } /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ CHECK(snd_pcm_hw_params_set_period_size_near(mPcmHandle, hp.get(), &periodSizeInFrames, nullptr)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(mPcmHandle, hp.get())); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_period_size(hp.get(), &periodSizeInFrames, nullptr)); #undef CHECK hp = nullptr; if(needring) mRing = RingBuffer::Create(mDevice->BufferSize, mDevice->frameSizeFromFmt(), false); mDevice->DeviceName = name; } void AlsaCapture::start() { int err{snd_pcm_prepare(mPcmHandle)}; if(err < 0) throw al::backend_exception{al::backend_error::DeviceError, "snd_pcm_prepare failed: %s", snd_strerror(err)}; err = snd_pcm_start(mPcmHandle); if(err < 0) throw al::backend_exception{al::backend_error::DeviceError, "snd_pcm_start failed: %s", snd_strerror(err)}; mDoCapture = true; } void AlsaCapture::stop() { /* OpenAL requires access to unread audio after stopping, but ALSA's * snd_pcm_drain is unreliable and snd_pcm_drop drops it. Capture what's * available now so it'll be available later after the drop. */ uint avail{availableSamples()}; if(!mRing && avail > 0) { /* The ring buffer implicitly captures when checking availability. * Direct access needs to explicitly capture it into temp storage. */ auto temp = al::vector( static_cast(snd_pcm_frames_to_bytes(mPcmHandle, avail))); captureSamples(temp.data(), avail); mBuffer = std::move(temp); } int err{snd_pcm_drop(mPcmHandle)}; if(err < 0) ERR("drop failed: %s\n", snd_strerror(err)); mDoCapture = false; } void AlsaCapture::captureSamples(al::byte *buffer, uint samples) { if(mRing) { mRing->read(buffer, samples); return; } mLastAvail -= samples; while(mDevice->Connected.load(std::memory_order_acquire) && samples > 0) { snd_pcm_sframes_t amt{0}; if(!mBuffer.empty()) { /* First get any data stored from the last stop */ amt = snd_pcm_bytes_to_frames(mPcmHandle, static_cast(mBuffer.size())); if(static_cast(amt) > samples) amt = samples; amt = snd_pcm_frames_to_bytes(mPcmHandle, amt); std::copy_n(mBuffer.begin(), amt, buffer); mBuffer.erase(mBuffer.begin(), mBuffer.begin()+amt); amt = snd_pcm_bytes_to_frames(mPcmHandle, amt); } else if(mDoCapture) amt = snd_pcm_readi(mPcmHandle, buffer, samples); if(amt < 0) { ERR("read error: %s\n", snd_strerror(static_cast(amt))); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(mPcmHandle, static_cast(amt), 1)) >= 0) { amt = snd_pcm_start(mPcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(mPcmHandle); } if(amt < 0) { const char *err{snd_strerror(static_cast(amt))}; ERR("restore error: %s\n", err); mDevice->handleDisconnect("Capture recovery failure: %s", err); break; } /* If the amount available is less than what's asked, we lost it * during recovery. So just give silence instead. */ if(static_cast(amt) < samples) break; continue; } buffer = buffer + amt; samples -= static_cast(amt); } if(samples > 0) std::fill_n(buffer, snd_pcm_frames_to_bytes(mPcmHandle, samples), al::byte((mDevice->FmtType == DevFmtUByte) ? 0x80 : 0)); } uint AlsaCapture::availableSamples() { snd_pcm_sframes_t avail{0}; if(mDevice->Connected.load(std::memory_order_acquire) && mDoCapture) avail = snd_pcm_avail_update(mPcmHandle); if(avail < 0) { ERR("avail update failed: %s\n", snd_strerror(static_cast(avail))); if((avail=snd_pcm_recover(mPcmHandle, static_cast(avail), 1)) >= 0) { if(mDoCapture) avail = snd_pcm_start(mPcmHandle); if(avail >= 0) avail = snd_pcm_avail_update(mPcmHandle); } if(avail < 0) { const char *err{snd_strerror(static_cast(avail))}; ERR("restore error: %s\n", err); mDevice->handleDisconnect("Capture recovery failure: %s", err); } } if(!mRing) { if(avail < 0) avail = 0; avail += snd_pcm_bytes_to_frames(mPcmHandle, static_cast(mBuffer.size())); if(avail > mLastAvail) mLastAvail = avail; return static_cast(mLastAvail); } while(avail > 0) { auto vec = mRing->getWriteVector(); if(vec.first.len == 0) break; snd_pcm_sframes_t amt{std::min(static_cast(vec.first.len), avail)}; amt = snd_pcm_readi(mPcmHandle, vec.first.buf, static_cast(amt)); if(amt < 0) { ERR("read error: %s\n", snd_strerror(static_cast(amt))); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(mPcmHandle, static_cast(amt), 1)) >= 0) { if(mDoCapture) amt = snd_pcm_start(mPcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(mPcmHandle); } if(amt < 0) { const char *err{snd_strerror(static_cast(amt))}; ERR("restore error: %s\n", err); mDevice->handleDisconnect("Capture recovery failure: %s", err); break; } avail = amt; continue; } mRing->writeAdvance(static_cast(amt)); avail -= amt; } return static_cast(mRing->readSpace()); } ClockLatency AlsaCapture::getClockLatency() { ClockLatency ret; ret.ClockTime = GetDeviceClockTime(mDevice); snd_pcm_sframes_t delay{}; int err{snd_pcm_delay(mPcmHandle, &delay)}; if(err < 0) { ERR("Failed to get pcm delay: %s\n", snd_strerror(err)); delay = 0; } ret.Latency = std::chrono::seconds{std::max(0, delay)}; ret.Latency /= mDevice->Frequency; return ret; } } // namespace bool AlsaBackendFactory::init() { bool error{false}; #ifdef HAVE_DYNLOAD if(!alsa_handle) { std::string missing_funcs; alsa_handle = LoadLib("libasound.so.2"); if(!alsa_handle) { WARN("Failed to load %s\n", "libasound.so.2"); return false; } error = false; #define LOAD_FUNC(f) do { \ p##f = reinterpret_cast(GetSymbol(alsa_handle, #f)); \ if(p##f == nullptr) { \ error = true; \ missing_funcs += "\n" #f; \ } \ } while(0) ALSA_FUNCS(LOAD_FUNC); #undef LOAD_FUNC if(error) { WARN("Missing expected functions:%s\n", missing_funcs.c_str()); CloseLib(alsa_handle); alsa_handle = nullptr; } } #endif return !error; } bool AlsaBackendFactory::querySupport(BackendType type) { return (type == BackendType::Playback || type == BackendType::Capture); } std::string AlsaBackendFactory::probe(BackendType type) { std::string outnames; auto add_device = [&outnames](const DevMap &entry) -> void { /* +1 to also append the null char (to ensure a null-separated list and * double-null terminated list). */ outnames.append(entry.name.c_str(), entry.name.length()+1); }; switch(type) { case BackendType::Playback: PlaybackDevices = probe_devices(SND_PCM_STREAM_PLAYBACK); std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device); break; case BackendType::Capture: CaptureDevices = probe_devices(SND_PCM_STREAM_CAPTURE); std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device); break; } return outnames; } BackendPtr AlsaBackendFactory::createBackend(ALCdevice *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new AlsaPlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new AlsaCapture{device}}; return nullptr; } BackendFactory &AlsaBackendFactory::getFactory() { static AlsaBackendFactory factory{}; return factory; }