/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is an OpenAL backend for Android using the native audio APIs based on * OpenSL ES 1.0.1. It is based on source code for the native-audio sample app * bundled with NDK. */ #include "config.h" #include "opensl.h" #include #include #include #include #include #include #include #include #include "albit.h" #include "alnumeric.h" #include "alsem.h" #include "althrd_setname.h" #include "core/device.h" #include "core/helpers.h" #include "core/logging.h" #include "opthelpers.h" #include "ringbuffer.h" #include #include #include namespace { /* Helper macros */ #define EXTRACT_VCALL_ARGS(...) __VA_ARGS__)) #define VCALL(obj, func) ((*(obj))->func((obj), EXTRACT_VCALL_ARGS #define VCALL0(obj, func) ((*(obj))->func((obj) EXTRACT_VCALL_ARGS constexpr char opensl_device[] = "OpenSL"; constexpr SLuint32 GetChannelMask(DevFmtChannels chans) noexcept { switch(chans) { case DevFmtMono: return SL_SPEAKER_FRONT_CENTER; case DevFmtStereo: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT; case DevFmtQuad: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT | SL_SPEAKER_BACK_LEFT | SL_SPEAKER_BACK_RIGHT; case DevFmtX51: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT | SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT; case DevFmtX61: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT | SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_CENTER | SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT; case DevFmtX71: case DevFmtX3D71: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT | SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_LEFT | SL_SPEAKER_BACK_RIGHT | SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT; case DevFmtX714: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT | SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_LEFT | SL_SPEAKER_BACK_RIGHT | SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT | SL_SPEAKER_TOP_FRONT_LEFT | SL_SPEAKER_TOP_FRONT_RIGHT | SL_SPEAKER_TOP_BACK_LEFT | SL_SPEAKER_TOP_BACK_RIGHT; case DevFmtAmbi3D: break; } return 0; } #ifdef SL_ANDROID_DATAFORMAT_PCM_EX constexpr SLuint32 GetTypeRepresentation(DevFmtType type) noexcept { switch(type) { case DevFmtUByte: case DevFmtUShort: case DevFmtUInt: return SL_ANDROID_PCM_REPRESENTATION_UNSIGNED_INT; case DevFmtByte: case DevFmtShort: case DevFmtInt: return SL_ANDROID_PCM_REPRESENTATION_SIGNED_INT; case DevFmtFloat: return SL_ANDROID_PCM_REPRESENTATION_FLOAT; } return 0; } #endif constexpr SLuint32 GetByteOrderEndianness() noexcept { if(al::endian::native == al::endian::little) return SL_BYTEORDER_LITTLEENDIAN; return SL_BYTEORDER_BIGENDIAN; } constexpr const char *res_str(SLresult result) noexcept { switch(result) { case SL_RESULT_SUCCESS: return "Success"; case SL_RESULT_PRECONDITIONS_VIOLATED: return "Preconditions violated"; case SL_RESULT_PARAMETER_INVALID: return "Parameter invalid"; case SL_RESULT_MEMORY_FAILURE: return "Memory failure"; case SL_RESULT_RESOURCE_ERROR: return "Resource error"; case SL_RESULT_RESOURCE_LOST: return "Resource lost"; case SL_RESULT_IO_ERROR: return "I/O error"; case SL_RESULT_BUFFER_INSUFFICIENT: return "Buffer insufficient"; case SL_RESULT_CONTENT_CORRUPTED: return "Content corrupted"; case SL_RESULT_CONTENT_UNSUPPORTED: return "Content unsupported"; case SL_RESULT_CONTENT_NOT_FOUND: return "Content not found"; case SL_RESULT_PERMISSION_DENIED: return "Permission denied"; case SL_RESULT_FEATURE_UNSUPPORTED: return "Feature unsupported"; case SL_RESULT_INTERNAL_ERROR: return "Internal error"; case SL_RESULT_UNKNOWN_ERROR: return "Unknown error"; case SL_RESULT_OPERATION_ABORTED: return "Operation aborted"; case SL_RESULT_CONTROL_LOST: return "Control lost"; #ifdef SL_RESULT_READONLY case SL_RESULT_READONLY: return "ReadOnly"; #endif #ifdef SL_RESULT_ENGINEOPTION_UNSUPPORTED case SL_RESULT_ENGINEOPTION_UNSUPPORTED: return "Engine option unsupported"; #endif #ifdef SL_RESULT_SOURCE_SINK_INCOMPATIBLE case SL_RESULT_SOURCE_SINK_INCOMPATIBLE: return "Source/Sink incompatible"; #endif } return "Unknown error code"; } inline void PrintErr(SLresult res, const char *str) { if(res != SL_RESULT_SUCCESS) UNLIKELY ERR("%s: %s\n", str, res_str(res)); } struct OpenSLPlayback final : public BackendBase { OpenSLPlayback(DeviceBase *device) noexcept : BackendBase{device} { } ~OpenSLPlayback() override; void process(SLAndroidSimpleBufferQueueItf bq) noexcept; int mixerProc(); void open(std::string_view name) override; bool reset() override; void start() override; void stop() override; ClockLatency getClockLatency() override; /* engine interfaces */ SLObjectItf mEngineObj{nullptr}; SLEngineItf mEngine{nullptr}; /* output mix interfaces */ SLObjectItf mOutputMix{nullptr}; /* buffer queue player interfaces */ SLObjectItf mBufferQueueObj{nullptr}; RingBufferPtr mRing{nullptr}; al::semaphore mSem; std::mutex mMutex; uint mFrameSize{0}; std::atomic mKillNow{true}; std::thread mThread; DEF_NEWDEL(OpenSLPlayback) }; OpenSLPlayback::~OpenSLPlayback() { if(mBufferQueueObj) VCALL0(mBufferQueueObj,Destroy)(); mBufferQueueObj = nullptr; if(mOutputMix) VCALL0(mOutputMix,Destroy)(); mOutputMix = nullptr; if(mEngineObj) VCALL0(mEngineObj,Destroy)(); mEngineObj = nullptr; mEngine = nullptr; } /* this callback handler is called every time a buffer finishes playing */ void OpenSLPlayback::process(SLAndroidSimpleBufferQueueItf) noexcept { /* A note on the ringbuffer usage: The buffer queue seems to hold on to the * pointer passed to the Enqueue method, rather than copying the audio. * Consequently, the ringbuffer contains the audio that is currently queued * and waiting to play. This process() callback is called when a buffer is * finished, so we simply move the read pointer up to indicate the space is * available for writing again, and wake up the mixer thread to mix and * queue more audio. */ mRing->readAdvance(1); mSem.post(); } int OpenSLPlayback::mixerProc() { SetRTPriority(); althrd_setname(MIXER_THREAD_NAME); SLPlayItf player; SLAndroidSimpleBufferQueueItf bufferQueue; SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue)}; PrintErr(result, "bufferQueue->GetInterface SL_IID_ANDROIDSIMPLEBUFFERQUEUE"); if(SL_RESULT_SUCCESS == result) { result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player); PrintErr(result, "bufferQueue->GetInterface SL_IID_PLAY"); } const size_t frame_step{mDevice->channelsFromFmt()}; if(SL_RESULT_SUCCESS != result) mDevice->handleDisconnect("Failed to get playback buffer: 0x%08x", result); while(SL_RESULT_SUCCESS == result && !mKillNow.load(std::memory_order_acquire) && mDevice->Connected.load(std::memory_order_acquire)) { if(mRing->writeSpace() == 0) { SLuint32 state{0}; result = VCALL(player,GetPlayState)(&state); PrintErr(result, "player->GetPlayState"); if(SL_RESULT_SUCCESS == result && state != SL_PLAYSTATE_PLAYING) { result = VCALL(player,SetPlayState)(SL_PLAYSTATE_PLAYING); PrintErr(result, "player->SetPlayState"); } if(SL_RESULT_SUCCESS != result) { mDevice->handleDisconnect("Failed to start playback: 0x%08x", result); break; } if(mRing->writeSpace() == 0) { mSem.wait(); continue; } } std::unique_lock dlock{mMutex}; auto data = mRing->getWriteVector(); mDevice->renderSamples(data.first.buf, static_cast(data.first.len)*mDevice->UpdateSize, frame_step); if(data.second.len > 0) mDevice->renderSamples(data.second.buf, static_cast(data.second.len)*mDevice->UpdateSize, frame_step); size_t todo{data.first.len + data.second.len}; mRing->writeAdvance(todo); dlock.unlock(); for(size_t i{0};i < todo;i++) { if(!data.first.len) { data.first = data.second; data.second.buf = nullptr; data.second.len = 0; } result = VCALL(bufferQueue,Enqueue)(data.first.buf, mDevice->UpdateSize*mFrameSize); PrintErr(result, "bufferQueue->Enqueue"); if(SL_RESULT_SUCCESS != result) { mDevice->handleDisconnect("Failed to queue audio: 0x%08x", result); break; } data.first.len--; data.first.buf += mDevice->UpdateSize*mFrameSize; } } return 0; } void OpenSLPlayback::open(std::string_view name) { if(name.empty()) name = opensl_device; else if(name != opensl_device) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%.*s\" not found", static_cast(name.length()), name.data()}; /* There's only one device, so if it's already open, there's nothing to do. */ if(mEngineObj) return; // create engine SLresult result{slCreateEngine(&mEngineObj, 0, nullptr, 0, nullptr, nullptr)}; PrintErr(result, "slCreateEngine"); if(SL_RESULT_SUCCESS == result) { result = VCALL(mEngineObj,Realize)(SL_BOOLEAN_FALSE); PrintErr(result, "engine->Realize"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(mEngineObj,GetInterface)(SL_IID_ENGINE, &mEngine); PrintErr(result, "engine->GetInterface"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(mEngine,CreateOutputMix)(&mOutputMix, 0, nullptr, nullptr); PrintErr(result, "engine->CreateOutputMix"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(mOutputMix,Realize)(SL_BOOLEAN_FALSE); PrintErr(result, "outputMix->Realize"); } if(SL_RESULT_SUCCESS != result) { if(mOutputMix) VCALL0(mOutputMix,Destroy)(); mOutputMix = nullptr; if(mEngineObj) VCALL0(mEngineObj,Destroy)(); mEngineObj = nullptr; mEngine = nullptr; throw al::backend_exception{al::backend_error::DeviceError, "Failed to initialize OpenSL device: 0x%08x", result}; } mDevice->DeviceName = name; } bool OpenSLPlayback::reset() { SLresult result; if(mBufferQueueObj) VCALL0(mBufferQueueObj,Destroy)(); mBufferQueueObj = nullptr; mRing = nullptr; #if 0 if(!mDevice->Flags.get()) { /* FIXME: Disabled until I figure out how to get the Context needed for * the getSystemService call. */ JNIEnv *env = Android_GetJNIEnv(); jobject jctx = Android_GetContext(); /* Get necessary stuff for using java.lang.Integer, * android.content.Context, and android.media.AudioManager. */ jclass int_cls = JCALL(env,FindClass)("java/lang/Integer"); jmethodID int_parseint = JCALL(env,GetStaticMethodID)(int_cls, "parseInt", "(Ljava/lang/String;)I" ); TRACE("Integer: %p, parseInt: %p\n", int_cls, int_parseint); jclass ctx_cls = JCALL(env,FindClass)("android/content/Context"); jfieldID ctx_audsvc = JCALL(env,GetStaticFieldID)(ctx_cls, "AUDIO_SERVICE", "Ljava/lang/String;" ); jmethodID ctx_getSysSvc = JCALL(env,GetMethodID)(ctx_cls, "getSystemService", "(Ljava/lang/String;)Ljava/lang/Object;" ); TRACE("Context: %p, AUDIO_SERVICE: %p, getSystemService: %p\n", ctx_cls, ctx_audsvc, ctx_getSysSvc); jclass audmgr_cls = JCALL(env,FindClass)("android/media/AudioManager"); jfieldID audmgr_prop_out_srate = JCALL(env,GetStaticFieldID)(audmgr_cls, "PROPERTY_OUTPUT_SAMPLE_RATE", "Ljava/lang/String;" ); jmethodID audmgr_getproperty = JCALL(env,GetMethodID)(audmgr_cls, "getProperty", "(Ljava/lang/String;)Ljava/lang/String;" ); TRACE("AudioManager: %p, PROPERTY_OUTPUT_SAMPLE_RATE: %p, getProperty: %p\n", audmgr_cls, audmgr_prop_out_srate, audmgr_getproperty); const char *strchars; jstring strobj; /* Now make the calls. */ //AudioManager audMgr = (AudioManager)getSystemService(Context.AUDIO_SERVICE); strobj = JCALL(env,GetStaticObjectField)(ctx_cls, ctx_audsvc); jobject audMgr = JCALL(env,CallObjectMethod)(jctx, ctx_getSysSvc, strobj); strchars = JCALL(env,GetStringUTFChars)(strobj, nullptr); TRACE("Context.getSystemService(%s) = %p\n", strchars, audMgr); JCALL(env,ReleaseStringUTFChars)(strobj, strchars); //String srateStr = audMgr.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE); strobj = JCALL(env,GetStaticObjectField)(audmgr_cls, audmgr_prop_out_srate); jstring srateStr = JCALL(env,CallObjectMethod)(audMgr, audmgr_getproperty, strobj); strchars = JCALL(env,GetStringUTFChars)(strobj, nullptr); TRACE("audMgr.getProperty(%s) = %p\n", strchars, srateStr); JCALL(env,ReleaseStringUTFChars)(strobj, strchars); //int sampleRate = Integer.parseInt(srateStr); sampleRate = JCALL(env,CallStaticIntMethod)(int_cls, int_parseint, srateStr); strchars = JCALL(env,GetStringUTFChars)(srateStr, nullptr); TRACE("Got system sample rate %uhz (%s)\n", sampleRate, strchars); JCALL(env,ReleaseStringUTFChars)(srateStr, strchars); if(!sampleRate) sampleRate = device->Frequency; else sampleRate = maxu(sampleRate, MIN_OUTPUT_RATE); } #endif mDevice->FmtChans = DevFmtStereo; mDevice->FmtType = DevFmtShort; setDefaultWFXChannelOrder(); mFrameSize = mDevice->frameSizeFromFmt(); const std::array ids{{ SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION }}; const std::array reqs{{ SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE }}; SLDataLocator_OutputMix loc_outmix{}; loc_outmix.locatorType = SL_DATALOCATOR_OUTPUTMIX; loc_outmix.outputMix = mOutputMix; SLDataSink audioSnk{}; audioSnk.pLocator = &loc_outmix; audioSnk.pFormat = nullptr; SLDataLocator_AndroidSimpleBufferQueue loc_bufq{}; loc_bufq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE; loc_bufq.numBuffers = mDevice->BufferSize / mDevice->UpdateSize; SLDataSource audioSrc{}; #ifdef SL_ANDROID_DATAFORMAT_PCM_EX SLAndroidDataFormat_PCM_EX format_pcm_ex{}; format_pcm_ex.formatType = SL_ANDROID_DATAFORMAT_PCM_EX; format_pcm_ex.numChannels = mDevice->channelsFromFmt(); format_pcm_ex.sampleRate = mDevice->Frequency * 1000; format_pcm_ex.bitsPerSample = mDevice->bytesFromFmt() * 8; format_pcm_ex.containerSize = format_pcm_ex.bitsPerSample; format_pcm_ex.channelMask = GetChannelMask(mDevice->FmtChans); format_pcm_ex.endianness = GetByteOrderEndianness(); format_pcm_ex.representation = GetTypeRepresentation(mDevice->FmtType); audioSrc.pLocator = &loc_bufq; audioSrc.pFormat = &format_pcm_ex; result = VCALL(mEngine,CreateAudioPlayer)(&mBufferQueueObj, &audioSrc, &audioSnk, ids.size(), ids.data(), reqs.data()); if(SL_RESULT_SUCCESS != result) #endif { /* Alter sample type according to what SLDataFormat_PCM can support. */ switch(mDevice->FmtType) { case DevFmtByte: mDevice->FmtType = DevFmtUByte; break; case DevFmtUInt: mDevice->FmtType = DevFmtInt; break; case DevFmtFloat: case DevFmtUShort: mDevice->FmtType = DevFmtShort; break; case DevFmtUByte: case DevFmtShort: case DevFmtInt: break; } SLDataFormat_PCM format_pcm{}; format_pcm.formatType = SL_DATAFORMAT_PCM; format_pcm.numChannels = mDevice->channelsFromFmt(); format_pcm.samplesPerSec = mDevice->Frequency * 1000; format_pcm.bitsPerSample = mDevice->bytesFromFmt() * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(mDevice->FmtChans); format_pcm.endianness = GetByteOrderEndianness(); audioSrc.pLocator = &loc_bufq; audioSrc.pFormat = &format_pcm; result = VCALL(mEngine,CreateAudioPlayer)(&mBufferQueueObj, &audioSrc, &audioSnk, ids.size(), ids.data(), reqs.data()); PrintErr(result, "engine->CreateAudioPlayer"); } if(SL_RESULT_SUCCESS == result) { /* Set the stream type to "media" (games, music, etc), if possible. */ SLAndroidConfigurationItf config; result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config); PrintErr(result, "bufferQueue->GetInterface SL_IID_ANDROIDCONFIGURATION"); if(SL_RESULT_SUCCESS == result) { SLint32 streamType = SL_ANDROID_STREAM_MEDIA; result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_STREAM_TYPE, &streamType, sizeof(streamType)); PrintErr(result, "config->SetConfiguration"); } /* Clear any error since this was optional. */ result = SL_RESULT_SUCCESS; } if(SL_RESULT_SUCCESS == result) { result = VCALL(mBufferQueueObj,Realize)(SL_BOOLEAN_FALSE); PrintErr(result, "bufferQueue->Realize"); } if(SL_RESULT_SUCCESS == result) { const uint num_updates{mDevice->BufferSize / mDevice->UpdateSize}; mRing = RingBuffer::Create(num_updates, mFrameSize*mDevice->UpdateSize, true); } if(SL_RESULT_SUCCESS != result) { if(mBufferQueueObj) VCALL0(mBufferQueueObj,Destroy)(); mBufferQueueObj = nullptr; return false; } return true; } void OpenSLPlayback::start() { mRing->reset(); SLAndroidSimpleBufferQueueItf bufferQueue; SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue)}; PrintErr(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(bufferQueue,RegisterCallback)( [](SLAndroidSimpleBufferQueueItf bq, void *context) noexcept { static_cast(context)->process(bq); }, this); PrintErr(result, "bufferQueue->RegisterCallback"); } if(SL_RESULT_SUCCESS != result) throw al::backend_exception{al::backend_error::DeviceError, "Failed to register callback: 0x%08x", result}; try { mKillNow.store(false, std::memory_order_release); mThread = std::thread(std::mem_fn(&OpenSLPlayback::mixerProc), this); } catch(std::exception& e) { throw al::backend_exception{al::backend_error::DeviceError, "Failed to start mixing thread: %s", e.what()}; } } void OpenSLPlayback::stop() { if(mKillNow.exchange(true, std::memory_order_acq_rel) || !mThread.joinable()) return; mSem.post(); mThread.join(); SLPlayItf player; SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player)}; PrintErr(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(player,SetPlayState)(SL_PLAYSTATE_STOPPED); PrintErr(result, "player->SetPlayState"); } SLAndroidSimpleBufferQueueItf bufferQueue; result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PrintErr(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL0(bufferQueue,Clear)(); PrintErr(result, "bufferQueue->Clear"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(bufferQueue,RegisterCallback)(nullptr, nullptr); PrintErr(result, "bufferQueue->RegisterCallback"); } if(SL_RESULT_SUCCESS == result) { SLAndroidSimpleBufferQueueState state; do { std::this_thread::yield(); result = VCALL(bufferQueue,GetState)(&state); } while(SL_RESULT_SUCCESS == result && state.count > 0); PrintErr(result, "bufferQueue->GetState"); mRing->reset(); } } ClockLatency OpenSLPlayback::getClockLatency() { ClockLatency ret; std::lock_guard _{mMutex}; ret.ClockTime = GetDeviceClockTime(mDevice); ret.Latency = std::chrono::seconds{mRing->readSpace() * mDevice->UpdateSize}; ret.Latency /= mDevice->Frequency; return ret; } struct OpenSLCapture final : public BackendBase { OpenSLCapture(DeviceBase *device) noexcept : BackendBase{device} { } ~OpenSLCapture() override; void process(SLAndroidSimpleBufferQueueItf bq) noexcept; void open(std::string_view name) override; void start() override; void stop() override; void captureSamples(std::byte *buffer, uint samples) override; uint availableSamples() override; /* engine interfaces */ SLObjectItf mEngineObj{nullptr}; SLEngineItf mEngine; /* recording interfaces */ SLObjectItf mRecordObj{nullptr}; RingBufferPtr mRing{nullptr}; uint mSplOffset{0u}; uint mFrameSize{0}; DEF_NEWDEL(OpenSLCapture) }; OpenSLCapture::~OpenSLCapture() { if(mRecordObj) VCALL0(mRecordObj,Destroy)(); mRecordObj = nullptr; if(mEngineObj) VCALL0(mEngineObj,Destroy)(); mEngineObj = nullptr; mEngine = nullptr; } void OpenSLCapture::process(SLAndroidSimpleBufferQueueItf) noexcept { /* A new chunk has been written into the ring buffer, advance it. */ mRing->writeAdvance(1); } void OpenSLCapture::open(std::string_view name) { if(name.empty()) name = opensl_device; else if(name != opensl_device) throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%.*s\" not found", static_cast(name.length()), name.data()}; SLresult result{slCreateEngine(&mEngineObj, 0, nullptr, 0, nullptr, nullptr)}; PrintErr(result, "slCreateEngine"); if(SL_RESULT_SUCCESS == result) { result = VCALL(mEngineObj,Realize)(SL_BOOLEAN_FALSE); PrintErr(result, "engine->Realize"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(mEngineObj,GetInterface)(SL_IID_ENGINE, &mEngine); PrintErr(result, "engine->GetInterface"); } if(SL_RESULT_SUCCESS == result) { mFrameSize = mDevice->frameSizeFromFmt(); /* Ensure the total length is at least 100ms */ uint length{maxu(mDevice->BufferSize, mDevice->Frequency/10)}; /* Ensure the per-chunk length is at least 10ms, and no more than 50ms. */ uint update_len{clampu(mDevice->BufferSize/3, mDevice->Frequency/100, mDevice->Frequency/100*5)}; uint num_updates{(length+update_len-1) / update_len}; mRing = RingBuffer::Create(num_updates, update_len*mFrameSize, false); mDevice->UpdateSize = update_len; mDevice->BufferSize = static_cast(mRing->writeSpace() * update_len); } if(SL_RESULT_SUCCESS == result) { const std::array ids{{ SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION }}; const std::array reqs{{ SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE }}; SLDataLocator_IODevice loc_dev{}; loc_dev.locatorType = SL_DATALOCATOR_IODEVICE; loc_dev.deviceType = SL_IODEVICE_AUDIOINPUT; loc_dev.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT; loc_dev.device = nullptr; SLDataSource audioSrc{}; audioSrc.pLocator = &loc_dev; audioSrc.pFormat = nullptr; SLDataLocator_AndroidSimpleBufferQueue loc_bq{}; loc_bq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE; loc_bq.numBuffers = mDevice->BufferSize / mDevice->UpdateSize; SLDataSink audioSnk{}; #ifdef SL_ANDROID_DATAFORMAT_PCM_EX SLAndroidDataFormat_PCM_EX format_pcm_ex{}; format_pcm_ex.formatType = SL_ANDROID_DATAFORMAT_PCM_EX; format_pcm_ex.numChannels = mDevice->channelsFromFmt(); format_pcm_ex.sampleRate = mDevice->Frequency * 1000; format_pcm_ex.bitsPerSample = mDevice->bytesFromFmt() * 8; format_pcm_ex.containerSize = format_pcm_ex.bitsPerSample; format_pcm_ex.channelMask = GetChannelMask(mDevice->FmtChans); format_pcm_ex.endianness = GetByteOrderEndianness(); format_pcm_ex.representation = GetTypeRepresentation(mDevice->FmtType); audioSnk.pLocator = &loc_bq; audioSnk.pFormat = &format_pcm_ex; result = VCALL(mEngine,CreateAudioRecorder)(&mRecordObj, &audioSrc, &audioSnk, ids.size(), ids.data(), reqs.data()); if(SL_RESULT_SUCCESS != result) #endif { /* Fallback to SLDataFormat_PCM only if it supports the desired * sample type. */ if(mDevice->FmtType == DevFmtUByte || mDevice->FmtType == DevFmtShort || mDevice->FmtType == DevFmtInt) { SLDataFormat_PCM format_pcm{}; format_pcm.formatType = SL_DATAFORMAT_PCM; format_pcm.numChannels = mDevice->channelsFromFmt(); format_pcm.samplesPerSec = mDevice->Frequency * 1000; format_pcm.bitsPerSample = mDevice->bytesFromFmt() * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(mDevice->FmtChans); format_pcm.endianness = GetByteOrderEndianness(); audioSnk.pLocator = &loc_bq; audioSnk.pFormat = &format_pcm; result = VCALL(mEngine,CreateAudioRecorder)(&mRecordObj, &audioSrc, &audioSnk, ids.size(), ids.data(), reqs.data()); } PrintErr(result, "engine->CreateAudioRecorder"); } } if(SL_RESULT_SUCCESS == result) { /* Set the record preset to "generic", if possible. */ SLAndroidConfigurationItf config; result = VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config); PrintErr(result, "recordObj->GetInterface SL_IID_ANDROIDCONFIGURATION"); if(SL_RESULT_SUCCESS == result) { SLuint32 preset = SL_ANDROID_RECORDING_PRESET_GENERIC; result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_RECORDING_PRESET, &preset, sizeof(preset)); PrintErr(result, "config->SetConfiguration"); } /* Clear any error since this was optional. */ result = SL_RESULT_SUCCESS; } if(SL_RESULT_SUCCESS == result) { result = VCALL(mRecordObj,Realize)(SL_BOOLEAN_FALSE); PrintErr(result, "recordObj->Realize"); } SLAndroidSimpleBufferQueueItf bufferQueue; if(SL_RESULT_SUCCESS == result) { result = VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PrintErr(result, "recordObj->GetInterface"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(bufferQueue,RegisterCallback)( [](SLAndroidSimpleBufferQueueItf bq, void *context) noexcept { static_cast(context)->process(bq); }, this); PrintErr(result, "bufferQueue->RegisterCallback"); } if(SL_RESULT_SUCCESS == result) { const uint chunk_size{mDevice->UpdateSize * mFrameSize}; const auto silence = (mDevice->FmtType == DevFmtUByte) ? std::byte{0x80} : std::byte{0}; auto data = mRing->getWriteVector(); std::fill_n(data.first.buf, data.first.len*chunk_size, silence); std::fill_n(data.second.buf, data.second.len*chunk_size, silence); for(size_t i{0u};i < data.first.len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data.first.buf + chunk_size*i, chunk_size); PrintErr(result, "bufferQueue->Enqueue"); } for(size_t i{0u};i < data.second.len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data.second.buf + chunk_size*i, chunk_size); PrintErr(result, "bufferQueue->Enqueue"); } } if(SL_RESULT_SUCCESS != result) { if(mRecordObj) VCALL0(mRecordObj,Destroy)(); mRecordObj = nullptr; if(mEngineObj) VCALL0(mEngineObj,Destroy)(); mEngineObj = nullptr; mEngine = nullptr; throw al::backend_exception{al::backend_error::DeviceError, "Failed to initialize OpenSL device: 0x%08x", result}; } mDevice->DeviceName = name; } void OpenSLCapture::start() { SLRecordItf record; SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_RECORD, &record)}; PrintErr(result, "recordObj->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(record,SetRecordState)(SL_RECORDSTATE_RECORDING); PrintErr(result, "record->SetRecordState"); } if(SL_RESULT_SUCCESS != result) throw al::backend_exception{al::backend_error::DeviceError, "Failed to start capture: 0x%08x", result}; } void OpenSLCapture::stop() { SLRecordItf record; SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_RECORD, &record)}; PrintErr(result, "recordObj->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(record,SetRecordState)(SL_RECORDSTATE_PAUSED); PrintErr(result, "record->SetRecordState"); } } void OpenSLCapture::captureSamples(std::byte *buffer, uint samples) { const uint update_size{mDevice->UpdateSize}; const uint chunk_size{update_size * mFrameSize}; /* Read the desired samples from the ring buffer then advance its read * pointer. */ size_t adv_count{0}; auto rdata = mRing->getReadVector(); for(uint i{0};i < samples;) { const uint rem{minu(samples - i, update_size - mSplOffset)}; std::copy_n(rdata.first.buf + mSplOffset*size_t{mFrameSize}, rem*size_t{mFrameSize}, buffer + i*size_t{mFrameSize}); mSplOffset += rem; if(mSplOffset == update_size) { /* Finished a chunk, reset the offset and advance the read pointer. */ mSplOffset = 0; ++adv_count; rdata.first.len -= 1; if(!rdata.first.len) rdata.first = rdata.second; else rdata.first.buf += chunk_size; } i += rem; } SLAndroidSimpleBufferQueueItf bufferQueue{}; if(mDevice->Connected.load(std::memory_order_acquire)) LIKELY { const SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue)}; PrintErr(result, "recordObj->GetInterface"); if(SL_RESULT_SUCCESS != result) UNLIKELY { mDevice->handleDisconnect("Failed to get capture buffer queue: 0x%08x", result); bufferQueue = nullptr; } } if(!bufferQueue || adv_count == 0) return; /* For each buffer chunk that was fully read, queue another writable buffer * chunk to keep the OpenSL queue full. This is rather convoluted, as a * result of the ring buffer holding more elements than are writable at a * given time. The end of the write vector increments when the read pointer * advances, which will "expose" a previously unwritable element. So for * every element that we've finished reading, we queue that many elements * from the end of the write vector. */ mRing->readAdvance(adv_count); SLresult result{SL_RESULT_SUCCESS}; auto wdata = mRing->getWriteVector(); if(adv_count > wdata.second.len) LIKELY { auto len1 = std::min(wdata.first.len, adv_count-wdata.second.len); auto buf1 = wdata.first.buf + chunk_size*(wdata.first.len-len1); for(size_t i{0u};i < len1 && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(buf1 + chunk_size*i, chunk_size); PrintErr(result, "bufferQueue->Enqueue"); } } if(wdata.second.len > 0) { auto len2 = std::min(wdata.second.len, adv_count); auto buf2 = wdata.second.buf + chunk_size*(wdata.second.len-len2); for(size_t i{0u};i < len2 && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(buf2 + chunk_size*i, chunk_size); PrintErr(result, "bufferQueue->Enqueue"); } } } uint OpenSLCapture::availableSamples() { return static_cast(mRing->readSpace()*mDevice->UpdateSize - mSplOffset); } } // namespace bool OSLBackendFactory::init() { return true; } bool OSLBackendFactory::querySupport(BackendType type) { return (type == BackendType::Playback || type == BackendType::Capture); } std::string OSLBackendFactory::probe(BackendType type) { std::string outnames; switch(type) { case BackendType::Playback: case BackendType::Capture: /* Includes null char. */ outnames.append(opensl_device, sizeof(opensl_device)); break; } return outnames; } BackendPtr OSLBackendFactory::createBackend(DeviceBase *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new OpenSLPlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new OpenSLCapture{device}}; return nullptr; } BackendFactory &OSLBackendFactory::getFactory() { static OSLBackendFactory factory{}; return factory; }