#include "config.h" #include "bformatdec.h" #include #include #include #include #include #include #include "AL/al.h" #include "almalloc.h" #include "alu.h" #include "ambdec.h" #include "filters/splitter.h" #include "opthelpers.h" namespace { constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_ORDER+1] = { 1.00000000e+00f, 1.00000000e+00f }; constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_ORDER+1] = { 7.45355990e-01f, 1.00000000e+00f }; constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_ORDER+1] = { 5.89792205e-01f, 8.79693856e-01f }; inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_ORDER+1] { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale; } inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array& { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa; if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D; return AmbiScale::FromN3D; } } // namespace BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const ALuint inchans, const ALuint srate, const ALuint (&chanmap)[MAX_OUTPUT_CHANNELS]) { mDualBand = allow_2band && (conf->FreqBands == 2); if(!mDualBand) mSamples.resize(2); else { ASSUME(inchans > 0); mSamples.resize(inchans * 2); mSamplesHF = mSamples.data(); mSamplesLF = mSamplesHF + inchans; } mNumChannels = inchans; mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u, [](ALuint mask, const ALuint &chan) noexcept -> ALuint { return mask | (1 << chan); } ); const ALfloat xover_norm{conf->XOverFreq / static_cast(srate)}; const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0}; const std::array &coeff_scale = GetAmbiScales(conf->CoeffScale); const size_t coeff_count{periphonic ? MAX_AMBI_CHANNELS : MAX_AMBI2D_CHANNELS}; if(!mDualBand) { for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanmap[i]]; for(size_t j{0},k{0};j < coeff_count;j++) { const size_t l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1u<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]); ++k; } } } else { mXOver[0].init(xover_norm); std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]); const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)}; for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[sNumBands][MAX_AMBI_CHANNELS] = mMatrix.Dual[chanmap[i]]; for(size_t j{0},k{0};j < coeff_count;j++) { const size_t l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1u<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio; mtx[sLFBand][j] = conf->LFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->LFOrderGain[3] : (l>=4) ? conf->LFOrderGain[2] : (l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio; ++k; } } } } BFormatDec::BFormatDec(const ALuint inchans, const ALsizei chancount, const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS], const ALuint (&chanmap)[MAX_OUTPUT_CHANNELS]) { mSamples.resize(2); mNumChannels = inchans; ASSUME(chancount > 0); mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u, [](ALuint mask, const ALuint &chan) noexcept -> ALuint { return mask | (1 << chan); } ); const ChannelDec *incoeffs{chancoeffs}; auto set_coeffs = [this,inchans,&incoeffs](const ALuint chanidx) noexcept -> void { ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanidx]; const ALfloat (&coeffs)[MAX_AMBI_CHANNELS] = *(incoeffs++); ASSUME(inchans > 0); std::copy_n(std::begin(coeffs), inchans, std::begin(mtx)); }; std::for_each(chanmap, chanmap+chancount, set_coeffs); } void BFormatDec::process(const al::span OutBuffer, const FloatBufferLine *InSamples, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); if(mDualBand) { for(ALuint i{0};i < mNumChannels;i++) mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i].data(), SamplesToDo); ALfloat (*mixmtx)[sNumBands][MAX_AMBI_CHANNELS]{mMatrix.Dual}; ALuint enabled{mEnabled}; for(FloatBufferLine &outbuf : OutBuffer) { if LIKELY(enabled&1) { const al::span outspan{outbuf.data(), SamplesToDo}; MixRowSamples(outspan, {(*mixmtx)[sHFBand], mNumChannels}, mSamplesHF->data(), mSamplesHF->size()); MixRowSamples(outspan, {(*mixmtx)[sLFBand], mNumChannels}, mSamplesLF->data(), mSamplesLF->size()); } ++mixmtx; enabled >>= 1; } } else { ALfloat (*mixmtx)[MAX_AMBI_CHANNELS]{mMatrix.Single}; ALuint enabled{mEnabled}; for(FloatBufferLine &outbuf : OutBuffer) { if LIKELY(enabled&1) MixRowSamples({outbuf.data(), SamplesToDo}, {*mixmtx, mNumChannels}, InSamples->data(), InSamples->size()); ++mixmtx; enabled >>= 1; } } } std::array BFormatDec::GetHFOrderScales(const ALsizei in_order, const ALsizei out_order) noexcept { std::array ret{}; assert(out_order >= in_order); ASSUME(out_order >= in_order); const ALfloat (&target)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order); const ALfloat (&input)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(in_order); for(ALsizei i{0};i < in_order+1;++i) ret[i] = input[i] / target[i]; return ret; }