#include "config.h" #include "bformatdec.h" #include #include #include #include #include #include #include "almalloc.h" #include "alu.h" #include "core/ambdec.h" #include "core/filters/splitter.h" #include "front_stablizer.h" #include "math_defs.h" #include "opthelpers.h" namespace { constexpr std::array Ambi3DDecoderHFScale{{ 1.00000000e+00f, 1.00000000e+00f }}; constexpr std::array Ambi3DDecoderHFScale2O{{ 7.45355990e-01f, 1.00000000e+00f, 1.00000000e+00f }}; constexpr std::array Ambi3DDecoderHFScale3O{{ 5.89792205e-01f, 8.79693856e-01f, 1.00000000e+00f, 1.00000000e+00f }}; inline auto& GetDecoderHFScales(uint order) noexcept { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale; } inline auto& GetAmbiScales(AmbDecScale scaletype) noexcept { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa(); if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D(); return AmbiScale::FromN3D(); } } // namespace BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const size_t inchans, const uint srate, const uint (&chanmap)[MAX_OUTPUT_CHANNELS], std::unique_ptr stablizer) : mStablizer{std::move(stablizer)}, mDualBand{allow_2band && (conf->FreqBands == 2)} , mChannelDec{inchans} { const bool periphonic{(conf->ChanMask&AmbiPeriphonicMask) != 0}; auto&& coeff_scale = GetAmbiScales(conf->CoeffScale); if(!mDualBand) { for(size_t j{0},k{0};j < mChannelDec.size();++j) { const size_t acn{periphonic ? j : AmbiIndex::FromACN2D()[j]}; if(!(conf->ChanMask&(1u<HFOrderGain[order] / coeff_scale[acn]}; for(size_t i{0u};i < conf->NumSpeakers;++i) { const size_t chanidx{chanmap[i]}; mChannelDec[j].mGains.Single[chanidx] = conf->Matrix[i][k] * gain; } ++k; } } else { mChannelDec[0].mXOver.init(conf->XOverFreq / static_cast(srate)); for(size_t j{1};j < mChannelDec.size();++j) mChannelDec[j].mXOver = mChannelDec[0].mXOver; const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)}; for(size_t j{0},k{0};j < mChannelDec.size();++j) { const size_t acn{periphonic ? j : AmbiIndex::FromACN2D()[j]}; if(!(conf->ChanMask&(1u<HFOrderGain[order] * ratio / coeff_scale[acn]}; const float lfGain{conf->LFOrderGain[order] / ratio / coeff_scale[acn]}; for(size_t i{0u};i < conf->NumSpeakers;++i) { const size_t chanidx{chanmap[i]}; mChannelDec[j].mGains.Dual[sHFBand][chanidx] = conf->HFMatrix[i][k] * hfGain; mChannelDec[j].mGains.Dual[sLFBand][chanidx] = conf->LFMatrix[i][k] * lfGain; } ++k; } } } BFormatDec::BFormatDec(const size_t inchans, const al::span coeffs, const al::span coeffslf, std::unique_ptr stablizer) : mStablizer{std::move(stablizer)}, mDualBand{!coeffslf.empty()}, mChannelDec{inchans} { if(!mDualBand) { for(size_t j{0};j < mChannelDec.size();++j) { float *outcoeffs{mChannelDec[j].mGains.Single}; for(const ChannelDec &incoeffs : coeffs) *(outcoeffs++) = incoeffs[j]; } } else { for(size_t j{0};j < mChannelDec.size();++j) { float *outcoeffs{mChannelDec[j].mGains.Dual[sHFBand]}; for(const ChannelDec &incoeffs : coeffs) *(outcoeffs++) = incoeffs[j]; outcoeffs = mChannelDec[j].mGains.Dual[sLFBand]; for(const ChannelDec &incoeffs : coeffslf) *(outcoeffs++) = incoeffs[j]; } } } void BFormatDec::process(const al::span OutBuffer, const FloatBufferLine *InSamples, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); if(mDualBand) { const al::span hfSamples{mSamples[sHFBand].data(), SamplesToDo}; const al::span lfSamples{mSamples[sLFBand].data(), SamplesToDo}; for(auto &chandec : mChannelDec) { chandec.mXOver.process({InSamples->data(), SamplesToDo}, hfSamples.data(), lfSamples.data()); MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sHFBand], chandec.mGains.Dual[sHFBand], 0, 0); MixSamples(lfSamples, OutBuffer, chandec.mGains.Dual[sLFBand], chandec.mGains.Dual[sLFBand], 0, 0); ++InSamples; } } else { for(auto &chandec : mChannelDec) { MixSamples({InSamples->data(), SamplesToDo}, OutBuffer, chandec.mGains.Single, chandec.mGains.Single, 0, 0); ++InSamples; } } } void BFormatDec::processStablize(const al::span OutBuffer, const FloatBufferLine *InSamples, const size_t lidx, const size_t ridx, const size_t cidx, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); /* Move the existing direct L/R signal out so it doesn't get processed by * the stablizer. Add a delay to it so it stays aligned with the stablizer * delay. */ float *RESTRICT mid{al::assume_aligned<16>(mStablizer->MidDirect.data())}; float *RESTRICT side{al::assume_aligned<16>(mStablizer->Side.data())}; for(size_t i{0};i < SamplesToDo;++i) { mid[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] + OutBuffer[ridx][i]; side[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] - OutBuffer[ridx][i]; } std::fill_n(OutBuffer[lidx].begin(), SamplesToDo, 0.0f); std::fill_n(OutBuffer[ridx].begin(), SamplesToDo, 0.0f); /* Decode the B-Format input to OutBuffer. */ process(OutBuffer, InSamples, SamplesToDo); /* Apply a delay to all channels, except the front-left and front-right, so * they maintain correct timing. */ const size_t NumChannels{OutBuffer.size()}; for(size_t i{0u};i < NumChannels;i++) { if(i == lidx || i == ridx) continue; auto &DelayBuf = mStablizer->DelayBuf[i]; auto buffer_end = OutBuffer[i].begin() + SamplesToDo; if LIKELY(SamplesToDo >= FrontStablizer::DelayLength) { auto delay_end = std::rotate(OutBuffer[i].begin(), buffer_end - FrontStablizer::DelayLength, buffer_end); std::swap_ranges(OutBuffer[i].begin(), delay_end, DelayBuf.begin()); } else { auto delay_start = std::swap_ranges(OutBuffer[i].begin(), buffer_end, DelayBuf.begin()); std::rotate(DelayBuf.begin(), delay_start, DelayBuf.end()); } } /* Include the side signal for what was just decoded. */ for(size_t i{0};i < SamplesToDo;++i) side[FrontStablizer::DelayLength+i] += OutBuffer[lidx][i] - OutBuffer[ridx][i]; /* Combine the delayed mid signal with the decoded mid signal. Note that * the samples are stored and combined in reverse, so the newest samples * are at the front and the oldest at the back. */ al::span tmpbuf{mStablizer->TempBuf.data(), SamplesToDo+FrontStablizer::DelayLength}; auto tmpiter = tmpbuf.begin() + SamplesToDo; std::copy(mStablizer->MidDelay.cbegin(), mStablizer->MidDelay.cend(), tmpiter); for(size_t i{0};i < SamplesToDo;++i) *--tmpiter = OutBuffer[lidx][i] + OutBuffer[ridx][i]; /* Save the newest samples for next time. */ std::copy_n(tmpbuf.cbegin(), mStablizer->MidDelay.size(), mStablizer->MidDelay.begin()); /* Apply an all-pass on the reversed signal, then reverse the samples to * get the forward signal with a reversed phase shift. The future samples * are included with the all-pass to reduce the error in the output * samples (the smaller the delay, the more error is introduced). */ mStablizer->MidFilter.applyAllpass(tmpbuf); tmpbuf = tmpbuf.subspan(); std::reverse(tmpbuf.begin(), tmpbuf.end()); /* Now apply the band-splitter, combining its phase shift with the reversed * phase shift, restoring the original phase on the split signal. */ mStablizer->MidFilter.process(tmpbuf, mStablizer->MidHF.data(), mStablizer->MidLF.data()); /* This pans the separate low- and high-frequency signals between being on * the center channel and the left+right channels. The low-frequency signal * is panned 1/3rd toward center and the high-frequency signal is panned * 1/4th toward center. These values can be tweaked. */ const float cos_lf{std::cos(1.0f/3.0f * (al::MathDefs::Pi()*0.5f))}; const float cos_hf{std::cos(1.0f/4.0f * (al::MathDefs::Pi()*0.5f))}; const float sin_lf{std::sin(1.0f/3.0f * (al::MathDefs::Pi()*0.5f))}; const float sin_hf{std::sin(1.0f/4.0f * (al::MathDefs::Pi()*0.5f))}; for(size_t i{0};i < SamplesToDo;i++) { const float m{mStablizer->MidLF[i]*cos_lf + mStablizer->MidHF[i]*cos_hf + mid[i]}; const float c{mStablizer->MidLF[i]*sin_lf + mStablizer->MidHF[i]*sin_hf}; const float s{side[i]}; /* The generated center channel signal adds to the existing signal, * while the modified left and right channels replace. */ OutBuffer[lidx][i] = (m + s) * 0.5f; OutBuffer[ridx][i] = (m - s) * 0.5f; OutBuffer[cidx][i] += c * 0.5f; } /* Move the delayed mid/side samples to the front for next time. */ auto mid_end = mStablizer->MidDirect.cbegin() + SamplesToDo; std::copy(mid_end, mid_end+FrontStablizer::DelayLength, mStablizer->MidDirect.begin()); auto side_end = mStablizer->Side.cbegin() + SamplesToDo; std::copy(side_end, side_end+FrontStablizer::DelayLength, mStablizer->Side.begin()); } auto BFormatDec::GetHFOrderScales(const uint in_order, const uint out_order) noexcept -> std::array { std::array ret{}; assert(out_order >= in_order); const auto &target = GetDecoderHFScales(out_order); const auto &input = GetDecoderHFScales(in_order); for(size_t i{0};i < in_order+1;++i) ret[i] = input[i] / target[i]; return ret; } std::unique_ptr BFormatDec::Create(const AmbDecConf *conf, const bool allow_2band, const size_t inchans, const uint srate, const uint (&chanmap)[MAX_OUTPUT_CHANNELS], std::unique_ptr stablizer) { return std::unique_ptr{new(FamCount(inchans)) BFormatDec{conf, allow_2band, inchans, srate, chanmap, std::move(stablizer)}}; } std::unique_ptr BFormatDec::Create(const size_t inchans, const al::span coeffs, const al::span coeffslf, std::unique_ptr stablizer) { return std::unique_ptr{new(FamCount(inchans)) BFormatDec{inchans, coeffs, coeffslf, std::move(stablizer)}}; }