/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/efx.h" #include "al/auxeffectslot.h" #include "alcmain.h" #include "alcontext.h" #include "almalloc.h" #include "alnumeric.h" #include "alspan.h" #include "alu.h" #include "ambidefs.h" #include "effects/base.h" #include "math_defs.h" #include "opthelpers.h" #include "vector.h" namespace { static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch"); static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch"); enum class WaveForm { Sinusoid, Triangle }; void GetTriangleDelays(ALuint *delays, const ALuint start_offset, const ALuint lfo_range, const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const size_t todo) { ASSUME(lfo_range > 0); ASSUME(todo > 0); ALuint offset{start_offset}; auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALuint { offset = (offset+1)%lfo_range; const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay); }; std::generate_n(delays, todo, gen_lfo); } void GetSinusoidDelays(ALuint *delays, const ALuint start_offset, const ALuint lfo_range, const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const size_t todo) { ASSUME(lfo_range > 0); ASSUME(todo > 0); ALuint offset{start_offset}; auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALuint { offset = (offset+1)%lfo_range; const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i(std::sin(offset_norm)*depth) + delay); }; std::generate_n(delays, todo, gen_lfo); } struct ChorusState final : public EffectState { al::vector mSampleBuffer; ALuint mOffset{0}; ALuint mLfoOffset{0}; ALuint mLfoRange{1}; ALfloat mLfoScale{0.0f}; ALuint mLfoDisp{0}; /* Gains for left and right sides */ struct { ALfloat Current[MAX_OUTPUT_CHANNELS]{}; ALfloat Target[MAX_OUTPUT_CHANNELS]{}; } mGains[2]; /* effect parameters */ WaveForm mWaveform{}; ALint mDelay{0}; ALfloat mDepth{0.0f}; ALfloat mFeedback{0.0f}; ALboolean deviceUpdate(const ALCdevice *device) override; void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ChorusState) }; ALboolean ChorusState::deviceUpdate(const ALCdevice *Device) { constexpr ALfloat max_delay{maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY)}; const auto frequency = static_cast(Device->Frequency); const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)}; if(maxlen != mSampleBuffer.size()) { mSampleBuffer.resize(maxlen); mSampleBuffer.shrink_to_fit(); } std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); for(auto &e : mGains) { std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); } return AL_TRUE; } void ChorusState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target) { constexpr ALsizei mindelay{(MAX_RESAMPLER_PADDING>>1) << FRACTIONBITS}; switch(props->Chorus.Waveform) { case AL_CHORUS_WAVEFORM_TRIANGLE: mWaveform = WaveForm::Triangle; break; case AL_CHORUS_WAVEFORM_SINUSOID: mWaveform = WaveForm::Sinusoid; break; } /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ const ALCdevice *device{Context->mDevice.get()}; const auto frequency = static_cast(device->Frequency); mDelay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay); mDepth = minf(props->Chorus.Depth * static_cast(mDelay), static_cast(mDelay - mindelay)); mFeedback = props->Chorus.Feedback; /* Gains for left and right sides */ ALfloat coeffs[2][MAX_AMBI_CHANNELS]; CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f, coeffs[0]); CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f, coeffs[1]); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs[0], Slot->Params.Gain, mGains[0].Target); ComputePanGains(target.Main, coeffs[1], Slot->Params.Gain, mGains[1].Target); ALfloat rate{props->Chorus.Rate}; if(!(rate > 0.0f)) { mLfoOffset = 0; mLfoRange = 1; mLfoScale = 0.0f; mLfoDisp = 0; } else { /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ ALuint lfo_range{float2uint(minf(frequency/rate + 0.5f, ALfloat{INT_MAX/360 - 180}))}; mLfoOffset = mLfoOffset * lfo_range / mLfoRange; mLfoRange = lfo_range; switch(mWaveform) { case WaveForm::Triangle: mLfoScale = 4.0f / static_cast(mLfoRange); break; case WaveForm::Sinusoid: mLfoScale = al::MathDefs::Tau() / static_cast(mLfoRange); break; } /* Calculate lfo phase displacement */ ALint phase{props->Chorus.Phase}; if(phase < 0) phase = 360 + phase; mLfoDisp = (mLfoRange*static_cast(phase) + 180) / 360; } } void ChorusState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t bufmask{mSampleBuffer.size()-1}; const ALfloat feedback{mFeedback}; const ALuint avgdelay{(static_cast(mDelay) + (FRACTIONONE>>1)) >> FRACTIONBITS}; ALfloat *RESTRICT delaybuf{mSampleBuffer.data()}; ALuint offset{mOffset}; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(256, samplesToDo-base)}; ALuint moddelays[2][256]; if(mWaveform == WaveForm::Sinusoid) { GetSinusoidDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay, todo); GetSinusoidDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale, mDepth, mDelay, todo); } else /*if(mWaveform == WaveForm::Triangle)*/ { GetTriangleDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay, todo); GetTriangleDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale, mDepth, mDelay, todo); } mLfoOffset = (mLfoOffset+static_cast(todo)) % mLfoRange; alignas(16) ALfloat temps[2][256]; for(size_t i{0u};i < todo;i++) { // Feed the buffer's input first (necessary for delays < 1). delaybuf[offset&bufmask] = samplesIn[0][base+i]; // Tap for the left output. ALuint delay{offset - (moddelays[0][i]>>FRACTIONBITS)}; ALfloat mu{static_cast(moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE)}; temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Tap for the right output. delay = offset - (moddelays[1][i]>>FRACTIONBITS); mu = static_cast(moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Accumulate feedback from the average delay of the taps. delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; ++offset; } for(ALsizei c{0};c < 2;c++) MixSamples({temps[c], todo}, samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo-base, base); base += todo; } mOffset = offset; } void Chorus_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) { switch(param) { case AL_CHORUS_WAVEFORM: if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid chorus waveform"); props->Chorus.Waveform = val; break; case AL_CHORUS_PHASE: if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus phase out of range"); props->Chorus.Phase = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); } } void Chorus_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) { Chorus_setParami(props, context, param, vals[0]); } void Chorus_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_CHORUS_RATE: if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus rate out of range"); props->Chorus.Rate = val; break; case AL_CHORUS_DEPTH: if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus depth out of range"); props->Chorus.Depth = val; break; case AL_CHORUS_FEEDBACK: if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus feedback out of range"); props->Chorus.Feedback = val; break; case AL_CHORUS_DELAY: if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus delay out of range"); props->Chorus.Delay = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); } } void Chorus_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) { Chorus_setParamf(props, context, param, vals[0]); } void Chorus_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) { switch(param) { case AL_CHORUS_WAVEFORM: *val = props->Chorus.Waveform; break; case AL_CHORUS_PHASE: *val = props->Chorus.Phase; break; default: context->setError(AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); } } void Chorus_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) { Chorus_getParami(props, context, param, vals); } void Chorus_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_CHORUS_RATE: *val = props->Chorus.Rate; break; case AL_CHORUS_DEPTH: *val = props->Chorus.Depth; break; case AL_CHORUS_FEEDBACK: *val = props->Chorus.Feedback; break; case AL_CHORUS_DELAY: *val = props->Chorus.Delay; break; default: context->setError(AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); } } void Chorus_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) { Chorus_getParamf(props, context, param, vals); } DEFINE_ALEFFECT_VTABLE(Chorus); struct ChorusStateFactory final : public EffectStateFactory { EffectState *create() override { return new ChorusState{}; } EffectProps getDefaultProps() const noexcept override; const EffectVtable *getEffectVtable() const noexcept override { return &Chorus_vtable; } }; EffectProps ChorusStateFactory::getDefaultProps() const noexcept { EffectProps props{}; props.Chorus.Waveform = AL_CHORUS_DEFAULT_WAVEFORM; props.Chorus.Phase = AL_CHORUS_DEFAULT_PHASE; props.Chorus.Rate = AL_CHORUS_DEFAULT_RATE; props.Chorus.Depth = AL_CHORUS_DEFAULT_DEPTH; props.Chorus.Feedback = AL_CHORUS_DEFAULT_FEEDBACK; props.Chorus.Delay = AL_CHORUS_DEFAULT_DELAY; return props; } void Flanger_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) { switch(param) { case AL_FLANGER_WAVEFORM: if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid flanger waveform"); props->Chorus.Waveform = val; break; case AL_FLANGER_PHASE: if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger phase out of range"); props->Chorus.Phase = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); } } void Flanger_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) { Flanger_setParami(props, context, param, vals[0]); } void Flanger_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_FLANGER_RATE: if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger rate out of range"); props->Chorus.Rate = val; break; case AL_FLANGER_DEPTH: if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger depth out of range"); props->Chorus.Depth = val; break; case AL_FLANGER_FEEDBACK: if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger feedback out of range"); props->Chorus.Feedback = val; break; case AL_FLANGER_DELAY: if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger delay out of range"); props->Chorus.Delay = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); } } void Flanger_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) { Flanger_setParamf(props, context, param, vals[0]); } void Flanger_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) { switch(param) { case AL_FLANGER_WAVEFORM: *val = props->Chorus.Waveform; break; case AL_FLANGER_PHASE: *val = props->Chorus.Phase; break; default: context->setError(AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); } } void Flanger_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) { Flanger_getParami(props, context, param, vals); } void Flanger_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_FLANGER_RATE: *val = props->Chorus.Rate; break; case AL_FLANGER_DEPTH: *val = props->Chorus.Depth; break; case AL_FLANGER_FEEDBACK: *val = props->Chorus.Feedback; break; case AL_FLANGER_DELAY: *val = props->Chorus.Delay; break; default: context->setError(AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); } } void Flanger_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) { Flanger_getParamf(props, context, param, vals); } DEFINE_ALEFFECT_VTABLE(Flanger); /* Flanger is basically a chorus with a really short delay. They can both use * the same processing functions, so piggyback flanger on the chorus functions. */ struct FlangerStateFactory final : public EffectStateFactory { EffectState *create() override { return new ChorusState{}; } EffectProps getDefaultProps() const noexcept override; const EffectVtable *getEffectVtable() const noexcept override { return &Flanger_vtable; } }; EffectProps FlangerStateFactory::getDefaultProps() const noexcept { EffectProps props{}; props.Chorus.Waveform = AL_FLANGER_DEFAULT_WAVEFORM; props.Chorus.Phase = AL_FLANGER_DEFAULT_PHASE; props.Chorus.Rate = AL_FLANGER_DEFAULT_RATE; props.Chorus.Depth = AL_FLANGER_DEFAULT_DEPTH; props.Chorus.Feedback = AL_FLANGER_DEFAULT_FEEDBACK; props.Chorus.Delay = AL_FLANGER_DEFAULT_DELAY; return props; } } // namespace EffectStateFactory *ChorusStateFactory_getFactory() { static ChorusStateFactory ChorusFactory{}; return &ChorusFactory; } EffectStateFactory *FlangerStateFactory_getFactory() { static FlangerStateFactory FlangerFactory{}; return &FlangerFactory; }