/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alcmain.h" #include "alcontext.h" #include "almalloc.h" #include "alnumeric.h" #include "alspan.h" #include "alu.h" #include "core/ambidefs.h" #include "effects/base.h" #include "effectslot.h" #include "math_defs.h" #include "opthelpers.h" #include "vector.h" namespace { #define MAX_UPDATE_SAMPLES 256 struct ChorusState final : public EffectState { al::vector mSampleBuffer; uint mOffset{0}; uint mLfoOffset{0}; uint mLfoRange{1}; float mLfoScale{0.0f}; uint mLfoDisp{0}; /* Gains for left and right sides */ struct { float Current[MAX_OUTPUT_CHANNELS]{}; float Target[MAX_OUTPUT_CHANNELS]{}; } mGains[2]; /* effect parameters */ ChorusWaveform mWaveform{}; int mDelay{0}; float mDepth{0.0f}; float mFeedback{0.0f}; void getTriangleDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo); void getSinusoidDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo); void deviceUpdate(const ALCdevice *device, const Buffer &buffer) override; void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ChorusState) }; void ChorusState::deviceUpdate(const ALCdevice *Device, const Buffer&) { constexpr float max_delay{maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY)}; const auto frequency = static_cast(Device->Frequency); const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)}; if(maxlen != mSampleBuffer.size()) al::vector(maxlen).swap(mSampleBuffer); std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); for(auto &e : mGains) { std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); } } void ChorusState::update(const ALCcontext *Context, const EffectSlot *Slot, const EffectProps *props, const EffectTarget target) { constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits}; /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ const ALCdevice *device{Context->mDevice.get()}; const auto frequency = static_cast(device->Frequency); mWaveform = props->Chorus.Waveform; mDelay = maxi(float2int(props->Chorus.Delay*frequency*MixerFracOne + 0.5f), mindelay); mDepth = minf(props->Chorus.Depth * static_cast(mDelay), static_cast(mDelay - mindelay)); mFeedback = props->Chorus.Feedback; /* Gains for left and right sides */ const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f); const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, lcoeffs.data(), Slot->Gain, mGains[0].Target); ComputePanGains(target.Main, rcoeffs.data(), Slot->Gain, mGains[1].Target); float rate{props->Chorus.Rate}; if(!(rate > 0.0f)) { mLfoOffset = 0; mLfoRange = 1; mLfoScale = 0.0f; mLfoDisp = 0; } else { /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))}; mLfoOffset = mLfoOffset * lfo_range / mLfoRange; mLfoRange = lfo_range; switch(mWaveform) { case ChorusWaveform::Triangle: mLfoScale = 4.0f / static_cast(mLfoRange); break; case ChorusWaveform::Sinusoid: mLfoScale = al::MathDefs::Tau() / static_cast(mLfoRange); break; } /* Calculate lfo phase displacement */ int phase{props->Chorus.Phase}; if(phase < 0) phase = 360 + phase; mLfoDisp = (mLfoRange*static_cast(phase) + 180) / 360; } } void ChorusState::getTriangleDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; ASSUME(lfo_range > 0); ASSUME(todo > 0); uint offset{mLfoOffset}; auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> uint { offset = (offset+1)%lfo_range; const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay); }; std::generate_n(delays[0], todo, gen_lfo); offset = (mLfoOffset+mLfoDisp) % lfo_range; std::generate_n(delays[1], todo, gen_lfo); mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::getSinusoidDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; ASSUME(lfo_range > 0); ASSUME(todo > 0); uint offset{mLfoOffset}; auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> uint { offset = (offset+1)%lfo_range; const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i(std::sin(offset_norm)*depth) + delay); }; std::generate_n(delays[0], todo, gen_lfo); offset = (mLfoOffset+mLfoDisp) % lfo_range; std::generate_n(delays[1], todo, gen_lfo); mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t bufmask{mSampleBuffer.size()-1}; const float feedback{mFeedback}; const uint avgdelay{(static_cast(mDelay) + (MixerFracOne>>1)) >> MixerFracBits}; float *RESTRICT delaybuf{mSampleBuffer.data()}; uint offset{mOffset}; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)}; uint moddelays[2][MAX_UPDATE_SAMPLES]; if(mWaveform == ChorusWaveform::Sinusoid) getSinusoidDelays(moddelays, todo); else /*if(mWaveform == ChorusWaveform::Triangle)*/ getTriangleDelays(moddelays, todo); alignas(16) float temps[2][MAX_UPDATE_SAMPLES]; for(size_t i{0u};i < todo;++i) { // Feed the buffer's input first (necessary for delays < 1). delaybuf[offset&bufmask] = samplesIn[0][base+i]; // Tap for the left output. uint delay{offset - (moddelays[0][i]>>MixerFracBits)}; float mu{static_cast(moddelays[0][i]&MixerFracMask) * (1.0f/MixerFracOne)}; temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Tap for the right output. delay = offset - (moddelays[1][i]>>MixerFracBits); mu = static_cast(moddelays[1][i]&MixerFracMask) * (1.0f/MixerFracOne); temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Accumulate feedback from the average delay of the taps. delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; ++offset; } for(ALsizei c{0};c < 2;++c) MixSamples({temps[c], todo}, samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo-base, base); base += todo; } mOffset = offset; } struct ChorusStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ChorusState{}}; } }; /* Flanger is basically a chorus with a really short delay. They can both use * the same processing functions, so piggyback flanger on the chorus functions. */ struct FlangerStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ChorusState{}}; } }; } // namespace EffectStateFactory *ChorusStateFactory_getFactory() { static ChorusStateFactory ChorusFactory{}; return &ChorusFactory; } EffectStateFactory *FlangerStateFactory_getFactory() { static FlangerStateFactory FlangerFactory{}; return &FlangerFactory; }