#include "config.h" #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SSE_INTRINSICS #include #elif defined(HAVE_NEON) #include #endif #include "alcomplex.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "base.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/buffer_storage.h" #include "core/context.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/filters/splitter.h" #include "core/fmt_traits.h" #include "core/mixer.h" #include "intrusive_ptr.h" #include "pffft.h" #include "polyphase_resampler.h" #include "vector.h" namespace { /* Convolution is implemented using a segmented overlap-add method. The impulse * response is split into multiple segments of 128 samples, and each segment * has an FFT applied with a 256-sample buffer (the latter half left silent) to * get its frequency-domain response. The resulting response has its positive/ * non-mirrored frequencies saved (129 bins) in each segment. Note that since * the 0- and half-frequency bins are real for a real signal, their imaginary * components are always 0 and can be dropped, allowing their real components * to be combined so only 128 complex values are stored for the 129 bins. * * Input samples are similarly broken up into 128-sample segments, with a 256- * sample FFT applied to each new incoming segment to get its 129 bins. A * history of FFT'd input segments is maintained, equal to the number of * impulse response segments. * * To apply the convolution, each impulse response segment is convolved with * its paired input segment (using complex multiplies, far cheaper than FIRs), * accumulating into a 129-bin FFT buffer. The input history is then shifted to * align with later impulse response segments for the next input segment. * * An inverse FFT is then applied to the accumulated FFT buffer to get a 256- * sample time-domain response for output, which is split in two halves. The * first half is the 128-sample output, and the second half is a 128-sample * (really, 127) delayed extension, which gets added to the output next time. * Convolving two time-domain responses of length N results in a time-domain * signal of length N*2 - 1, and this holds true regardless of the convolution * being applied in the frequency domain, so these "overflow" samples need to * be accounted for. * * To avoid a delay with gathering enough input samples for the FFT, the first * segment is applied directly in the time-domain as the samples come in. Once * enough have been retrieved, the FFT is applied on the input and it's paired * with the remaining (FFT'd) filter segments for processing. */ void LoadSamples(float *RESTRICT dst, const std::byte *src, const size_t srcstep, FmtType srctype, const size_t samples) noexcept { #define HANDLE_FMT(T) case T: al::LoadSampleArray(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(FmtUByte); HANDLE_FMT(FmtShort); HANDLE_FMT(FmtInt); HANDLE_FMT(FmtFloat); HANDLE_FMT(FmtDouble); HANDLE_FMT(FmtMulaw); HANDLE_FMT(FmtAlaw); /* FIXME: Handle ADPCM decoding here. */ case FmtIMA4: case FmtMSADPCM: std::fill_n(dst, samples, 0.0f); break; } #undef HANDLE_FMT } constexpr auto GetAmbiScales(AmbiScaling scaletype) noexcept { switch(scaletype) { case AmbiScaling::FuMa: return al::span{AmbiScale::FromFuMa}; case AmbiScaling::SN3D: return al::span{AmbiScale::FromSN3D}; case AmbiScaling::UHJ: return al::span{AmbiScale::FromUHJ}; case AmbiScaling::N3D: break; } return al::span{AmbiScale::FromN3D}; } constexpr auto GetAmbiLayout(AmbiLayout layouttype) noexcept { if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa}; return al::span{AmbiIndex::FromACN}; } constexpr auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept { if(layouttype == AmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa2D}; return al::span{AmbiIndex::FromACN2D}; } constexpr float sin30{0.5f}; constexpr float cos30{0.866025403785f}; constexpr float sin45{al::numbers::sqrt2_v*0.5f}; constexpr float cos45{al::numbers::sqrt2_v*0.5f}; constexpr float sin110{ 0.939692620786f}; constexpr float cos110{-0.342020143326f}; struct ChanPosMap { Channel channel; std::array pos; }; using complex_f = std::complex; constexpr size_t ConvolveUpdateSize{256}; constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2}; void apply_fir(al::span dst, const float *RESTRICT src, const float *RESTRICT filter) { #ifdef HAVE_SSE_INTRINSICS for(float &output : dst) { __m128 r4{_mm_setzero_ps()}; for(size_t j{0};j < ConvolveUpdateSamples;j+=4) { const __m128 coeffs{_mm_load_ps(&filter[j])}; const __m128 s{_mm_loadu_ps(&src[j])}; r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); output = _mm_cvtss_f32(r4); ++src; } #elif defined(HAVE_NEON) for(float &output : dst) { float32x4_t r4{vdupq_n_f32(0.0f)}; for(size_t j{0};j < ConvolveUpdateSamples;j+=4) r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j])); r4 = vaddq_f32(r4, vrev64q_f32(r4)); output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); ++src; } #else for(float &output : dst) { float ret{0.0f}; for(size_t j{0};j < ConvolveUpdateSamples;++j) ret += src[j] * filter[j]; output = ret; ++src; } #endif } struct ConvolutionState final : public EffectState { FmtChannels mChannels{}; AmbiLayout mAmbiLayout{}; AmbiScaling mAmbiScaling{}; uint mAmbiOrder{}; size_t mFifoPos{0}; alignas(16) std::array mInput{}; al::vector,16> mFilter; al::vector,16> mOutput; PFFFTSetup mFft{}; alignas(16) std::array mFftBuffer{}; alignas(16) std::array mFftWorkBuffer{}; size_t mCurrentSegment{0}; size_t mNumConvolveSegs{0}; struct ChannelData { alignas(16) FloatBufferLine mBuffer{}; float mHfScale{}, mLfScale{}; BandSplitter mFilter{}; std::array Current{}; std::array Target{}; }; std::vector mChans; al::vector mComplexData; ConvolutionState() = default; ~ConvolutionState() override = default; void NormalMix(const al::span samplesOut, const size_t samplesToDo); void UpsampleMix(const al::span samplesOut, const size_t samplesToDo); void (ConvolutionState::*mMix)(const al::span,const size_t) {&ConvolutionState::NormalMix}; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; }; void ConvolutionState::NormalMix(const al::span samplesOut, const size_t samplesToDo) { for(auto &chan : mChans) MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current.data(), chan.Target.data(), samplesToDo, 0); } void ConvolutionState::UpsampleMix(const al::span samplesOut, const size_t samplesToDo) { for(auto &chan : mChans) { const al::span src{chan.mBuffer.data(), samplesToDo}; chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale); MixSamples(src, samplesOut, chan.Current.data(), chan.Target.data(), samplesToDo, 0); } } void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) { using UhjDecoderType = UhjDecoder<512>; static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding; static constexpr uint MaxConvolveAmbiOrder{1u}; if(!mFft) mFft = PFFFTSetup{ConvolveUpdateSize, PFFFT_REAL}; mFifoPos = 0; mInput.fill(0.0f); decltype(mFilter){}.swap(mFilter); decltype(mOutput){}.swap(mOutput); mFftBuffer.fill(0.0f); mFftWorkBuffer.fill(0.0f); mCurrentSegment = 0; mNumConvolveSegs = 0; decltype(mChans){}.swap(mChans); decltype(mComplexData){}.swap(mComplexData); /* An empty buffer doesn't need a convolution filter. */ if(!buffer || buffer->mSampleLen < 1) return; mChannels = buffer->mChannels; mAmbiLayout = IsUHJ(mChannels) ? AmbiLayout::FuMa : buffer->mAmbiLayout; mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling; mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder); const auto bytesPerSample = BytesFromFmt(buffer->mType); const auto realChannels = buffer->channelsFromFmt(); const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder); mChans.resize(numChannels); /* The impulse response needs to have the same sample rate as the input and * output. The bsinc24 resampler is decent, but there is high-frequency * attenuation that some people may be able to pick up on. Since this is * called very infrequently, go ahead and use the polyphase resampler. */ PPhaseResampler resampler; if(device->Frequency != buffer->mSampleRate) resampler.init(buffer->mSampleRate, device->Frequency); const auto resampledCount = static_cast( (uint64_t{buffer->mSampleLen}*device->Frequency+(buffer->mSampleRate-1)) / buffer->mSampleRate); const BandSplitter splitter{device->mXOverFreq / static_cast(device->Frequency)}; for(auto &e : mChans) e.mFilter = splitter; mFilter.resize(numChannels, {}); mOutput.resize(numChannels, {}); /* Calculate the number of segments needed to hold the impulse response and * the input history (rounded up), and allocate them. Exclude one segment * which gets applied as a time-domain FIR filter. Make sure at least one * segment is allocated to simplify handling. */ mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples; mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1; const size_t complex_length{mNumConvolveSegs * ConvolveUpdateSize * (numChannels+1)}; mComplexData.resize(complex_length, 0.0f); /* Load the samples from the buffer. */ const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)}; auto srcsamples = std::vector(srclinelength * numChannels); std::fill(srcsamples.begin(), srcsamples.end(), 0.0f); for(size_t c{0};c < numChannels && c < realChannels;++c) LoadSamples(srcsamples.data() + srclinelength*c, buffer->mData.data() + bytesPerSample*c, realChannels, buffer->mType, buffer->mSampleLen); if(IsUHJ(mChannels)) { auto decoder = std::make_unique(); std::array samples{}; for(size_t c{0};c < numChannels;++c) samples[c] = srcsamples.data() + srclinelength*c; decoder->decode({samples.data(), numChannels}, buffer->mSampleLen, buffer->mSampleLen); } auto ressamples = std::vector(buffer->mSampleLen + (resampler ? resampledCount : 0)); auto ffttmp = al::vector(ConvolveUpdateSize); auto fftbuffer = std::vector>(ConvolveUpdateSize); float *filteriter = mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize; for(size_t c{0};c < numChannels;++c) { /* Resample to match the device. */ if(resampler) { std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen, ressamples.data() + resampledCount); resampler.process(buffer->mSampleLen, ressamples.data()+resampledCount, resampledCount, ressamples.data()); } else std::copy_n(srcsamples.data() + srclinelength*c, buffer->mSampleLen, ressamples.data()); /* Store the first segment's samples in reverse in the time-domain, to * apply as a FIR filter. */ const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)}; std::transform(ressamples.data(), ressamples.data()+first_size, mFilter[c].rbegin(), [](const double d) noexcept -> float { return static_cast(d); }); size_t done{first_size}; for(size_t s{0};s < mNumConvolveSegs;++s) { const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)}; /* Apply a double-precision forward FFT for more precise frequency * measurements. */ auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin()); done += todo; std::fill(iter, fftbuffer.end(), std::complex{}); forward_fft(al::span{fftbuffer}); /* Convert to, and pack in, a float buffer for PFFFT. Note that the * first bin stores the real component of the half-frequency bin in * the imaginary component. Also scale the FFT by its length so the * iFFT'd output will be normalized. */ static constexpr float fftscale{1.0f / float{ConvolveUpdateSize}}; for(size_t i{0};i < ConvolveUpdateSamples;++i) { ffttmp[i*2 ] = static_cast(fftbuffer[i].real()) * fftscale; ffttmp[i*2 + 1] = static_cast((i == 0) ? fftbuffer[ConvolveUpdateSamples].real() : fftbuffer[i].imag()) * fftscale; } /* Reorder backward to make it suitable for pffft_zconvolve and the * subsequent pffft_transform(..., PFFFT_BACKWARD). */ mFft.zreorder(ffttmp.data(), al::to_address(filteriter), PFFFT_BACKWARD); filteriter += ConvolveUpdateSize; } } } void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_, const EffectTarget target) { /* TODO: LFE is not mixed to output. This will require each buffer channel * to have its own output target since the main mixing buffer won't have an * LFE channel (due to being B-Format). */ static constexpr std::array MonoMap{ ChanPosMap{FrontCenter, std::array{0.0f, 0.0f, -1.0f}} }; static constexpr std::array StereoMap{ ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, }; static constexpr std::array RearMap{ ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}}, ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}}, }; static constexpr std::array QuadMap{ ChanPosMap{FrontLeft, std::array{-sin45, 0.0f, -cos45}}, ChanPosMap{FrontRight, std::array{ sin45, 0.0f, -cos45}}, ChanPosMap{BackLeft, std::array{-sin45, 0.0f, cos45}}, ChanPosMap{BackRight, std::array{ sin45, 0.0f, cos45}}, }; static constexpr std::array X51Map{ ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, ChanPosMap{LFE, {}}, ChanPosMap{SideLeft, std::array{-sin110, 0.0f, -cos110}}, ChanPosMap{SideRight, std::array{ sin110, 0.0f, -cos110}}, }; static constexpr std::array X61Map{ ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, ChanPosMap{LFE, {}}, ChanPosMap{BackCenter, std::array{ 0.0f, 0.0f, 1.0f} }, ChanPosMap{SideLeft, std::array{-1.0f, 0.0f, 0.0f} }, ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f} }, }; static constexpr std::array X71Map{ ChanPosMap{FrontLeft, std::array{-sin30, 0.0f, -cos30}}, ChanPosMap{FrontRight, std::array{ sin30, 0.0f, -cos30}}, ChanPosMap{FrontCenter, std::array{ 0.0f, 0.0f, -1.0f}}, ChanPosMap{LFE, {}}, ChanPosMap{BackLeft, std::array{-sin30, 0.0f, cos30}}, ChanPosMap{BackRight, std::array{ sin30, 0.0f, cos30}}, ChanPosMap{SideLeft, std::array{ -1.0f, 0.0f, 0.0f}}, ChanPosMap{SideRight, std::array{ 1.0f, 0.0f, 0.0f}}, }; if(mNumConvolveSegs < 1) UNLIKELY return; auto &props = std::get(*props_); mMix = &ConvolutionState::NormalMix; for(auto &chan : mChans) std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f); const float gain{slot->Gain}; if(IsAmbisonic(mChannels)) { DeviceBase *device{context->mDevice}; if(mChannels == FmtUHJ2 && !device->mUhjEncoder) { mMix = &ConvolutionState::UpsampleMix; mChans[0].mHfScale = 1.0f; mChans[0].mLfScale = DecoderBase::sWLFScale; mChans[1].mHfScale = 1.0f; mChans[1].mLfScale = DecoderBase::sXYLFScale; mChans[2].mHfScale = 1.0f; mChans[2].mLfScale = DecoderBase::sXYLFScale; } else if(device->mAmbiOrder > mAmbiOrder) { mMix = &ConvolutionState::UpsampleMix; const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder, device->m2DMixing); mChans[0].mHfScale = scales[0]; mChans[0].mLfScale = 1.0f; for(size_t i{1};i < mChans.size();++i) { mChans[i].mHfScale = scales[1]; mChans[i].mLfScale = 1.0f; } } mOutTarget = target.Main->Buffer; alu::Vector N{props.OrientAt[0], props.OrientAt[1], props.OrientAt[2], 0.0f}; N.normalize(); alu::Vector V{props.OrientUp[0], props.OrientUp[1], props.OrientUp[2], 0.0f}; V.normalize(); /* Build and normalize right-vector */ alu::Vector U{N.cross_product(V)}; U.normalize(); const std::array mixmatrix{ std::array{1.0f, 0.0f, 0.0f, 0.0f}, std::array{0.0f, U[0], -U[1], U[2]}, std::array{0.0f, -V[0], V[1], -V[2]}, std::array{0.0f, -N[0], N[1], -N[2]}, }; const auto scales = GetAmbiScales(mAmbiScaling); const uint8_t *index_map{Is2DAmbisonic(mChannels) ? GetAmbi2DLayout(mAmbiLayout).data() : GetAmbiLayout(mAmbiLayout).data()}; std::array coeffs{}; for(size_t c{0u};c < mChans.size();++c) { const size_t acn{index_map[c]}; const float scale{scales[acn]}; for(size_t x{0};x < 4;++x) coeffs[x] = mixmatrix[acn][x] * scale; ComputePanGains(target.Main, coeffs, gain, mChans[c].Target); } } else { DeviceBase *device{context->mDevice}; al::span chanmap{}; switch(mChannels) { case FmtMono: chanmap = MonoMap; break; case FmtSuperStereo: case FmtStereo: chanmap = StereoMap; break; case FmtRear: chanmap = RearMap; break; case FmtQuad: chanmap = QuadMap; break; case FmtX51: chanmap = X51Map; break; case FmtX61: chanmap = X61Map; break; case FmtX71: chanmap = X71Map; break; case FmtBFormat2D: case FmtBFormat3D: case FmtUHJ2: case FmtUHJ3: case FmtUHJ4: break; } mOutTarget = target.Main->Buffer; if(device->mRenderMode == RenderMode::Pairwise) { /* Scales the azimuth of the given vector by 3 if it's in front. * Effectively scales +/-30 degrees to +/-90 degrees, leaving > +90 * and < -90 alone. */ auto ScaleAzimuthFront = [](std::array pos) -> std::array { if(pos[2] < 0.0f) { /* Normalize the length of the x,z components for a 2D * vector of the azimuth angle. Negate Z since {0,0,-1} is * angle 0. */ const float len2d{std::sqrt(pos[0]*pos[0] + pos[2]*pos[2])}; float x{pos[0] / len2d}; float z{-pos[2] / len2d}; /* Z > cos(pi/6) = -30 < azimuth < 30 degrees. */ if(z > cos30) { /* Triple the angle represented by x,z. */ x = x*3.0f - x*x*x*4.0f; z = z*z*z*4.0f - z*3.0f; /* Scale the vector back to fit in 3D. */ pos[0] = x * len2d; pos[2] = -z * len2d; } else { /* If azimuth >= 30 degrees, clamp to 90 degrees. */ pos[0] = std::copysign(len2d, pos[0]); pos[2] = 0.0f; } } return pos; }; for(size_t i{0};i < chanmap.size();++i) { if(chanmap[i].channel == LFE) continue; const auto coeffs = CalcDirectionCoeffs(ScaleAzimuthFront(chanmap[i].pos), 0.0f); ComputePanGains(target.Main, coeffs, gain, mChans[i].Target); } } else for(size_t i{0};i < chanmap.size();++i) { if(chanmap[i].channel == LFE) continue; const auto coeffs = CalcDirectionCoeffs(chanmap[i].pos, 0.0f); ComputePanGains(target.Main, coeffs, gain, mChans[i].Target); } } } void ConvolutionState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { if(mNumConvolveSegs < 1) UNLIKELY return; size_t curseg{mCurrentSegment}; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)}; std::copy_n(samplesIn[0].begin() + base, todo, mInput.begin()+ConvolveUpdateSamples+mFifoPos); /* Apply the FIR for the newly retrieved input samples, and combine it * with the inverse FFT'd output samples. */ for(size_t c{0};c < mChans.size();++c) { auto buf_iter = mChans[c].mBuffer.begin() + base; apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data()); auto fifo_iter = mOutput[c].begin() + mFifoPos; std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{}); } mFifoPos += todo; base += todo; /* Check whether the input buffer is filled with new samples. */ if(mFifoPos < ConvolveUpdateSamples) break; mFifoPos = 0; /* Move the newest input to the front for the next iteration's history. */ std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin()); std::fill(mInput.begin()+ConvolveUpdateSamples, mInput.end(), 0.0f); /* Calculate the frequency-domain response and add the relevant * frequency bins to the FFT history. */ mFft.transform(mInput.data(), mComplexData.data() + curseg*ConvolveUpdateSize, mFftWorkBuffer.data(), PFFFT_FORWARD); const float *filter{mComplexData.data() + mNumConvolveSegs*ConvolveUpdateSize}; for(size_t c{0};c < mChans.size();++c) { /* Convolve each input segment with its IR filter counterpart * (aligned in time). */ mFftBuffer.fill(0.0f); const float *input{&mComplexData[curseg*ConvolveUpdateSize]}; for(size_t s{curseg};s < mNumConvolveSegs;++s) { mFft.zconvolve_accumulate(input, filter, mFftBuffer.data()); input += ConvolveUpdateSize; filter += ConvolveUpdateSize; } input = mComplexData.data(); for(size_t s{0};s < curseg;++s) { mFft.zconvolve_accumulate(input, filter, mFftBuffer.data()); input += ConvolveUpdateSize; filter += ConvolveUpdateSize; } /* Apply iFFT to get the 256 (really 255) samples for output. The * 128 output samples are combined with the last output's 127 * second-half samples (and this output's second half is * subsequently saved for next time). */ mFft.transform(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), PFFFT_BACKWARD); /* The filter was attenuated, so the response is already scaled. */ for(size_t i{0};i < ConvolveUpdateSamples;++i) mOutput[c][i] = mFftBuffer[i] + mOutput[c][ConvolveUpdateSamples+i]; for(size_t i{0};i < ConvolveUpdateSamples;++i) mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i]; } /* Shift the input history. */ curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1); } mCurrentSegment = curseg; /* Finally, mix to the output. */ (this->*mMix)(samplesOut, samplesToDo); } struct ConvolutionStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ConvolutionState{}}; } }; } // namespace EffectStateFactory *ConvolutionStateFactory_getFactory() { static ConvolutionStateFactory ConvolutionFactory{}; return &ConvolutionFactory; }