/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "AL/efx.h" #include "alcmain.h" #include "alcontext.h" #include "core/filters/biquad.h" #include "effectslot.h" #include "vector.h" namespace { constexpr float LowpassFreqRef{5000.0f}; struct EchoState final : public EffectState { al::vector mSampleBuffer; // The echo is two tap. The delay is the number of samples from before the // current offset struct { size_t delay{0u}; } mTap[2]; size_t mOffset{0u}; /* The panning gains for the two taps */ struct { float Current[MAX_OUTPUT_CHANNELS]{}; float Target[MAX_OUTPUT_CHANNELS]{}; } mGains[2]; BiquadFilter mFilter; float mFeedGain{0.0f}; alignas(16) float mTempBuffer[2][BufferLineSize]; void deviceUpdate(const ALCdevice *device) override; void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(EchoState) }; void EchoState::deviceUpdate(const ALCdevice *Device) { const auto frequency = static_cast(Device->Frequency); // Use the next power of 2 for the buffer length, so the tap offsets can be // wrapped using a mask instead of a modulo const ALuint maxlen{NextPowerOf2(float2uint(AL_ECHO_MAX_DELAY*frequency + 0.5f) + float2uint(AL_ECHO_MAX_LRDELAY*frequency + 0.5f))}; if(maxlen != mSampleBuffer.size()) al::vector(maxlen).swap(mSampleBuffer); std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); for(auto &e : mGains) { std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); } } void EchoState::update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { const ALCdevice *device{context->mDevice.get()}; const auto frequency = static_cast(device->Frequency); mTap[0].delay = maxu(float2uint(props->Echo.Delay*frequency + 0.5f), 1); mTap[1].delay = float2uint(props->Echo.LRDelay*frequency + 0.5f) + mTap[0].delay; const float gainhf{maxf(1.0f - props->Echo.Damping, 0.0625f)}; /* Limit -24dB */ mFilter.setParamsFromSlope(BiquadType::HighShelf, LowpassFreqRef/frequency, gainhf, 1.0f); mFeedGain = props->Echo.Feedback; /* Convert echo spread (where 0 = center, +/-1 = sides) to angle. */ const float angle{std::asin(props->Echo.Spread)}; const auto coeffs0 = CalcAngleCoeffs(-angle, 0.0f, 0.0f); const auto coeffs1 = CalcAngleCoeffs( angle, 0.0f, 0.0f); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs0.data(), slot->Gain, mGains[0].Target); ComputePanGains(target.Main, coeffs1.data(), slot->Gain, mGains[1].Target); } void EchoState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t mask{mSampleBuffer.size()-1}; float *RESTRICT delaybuf{mSampleBuffer.data()}; size_t offset{mOffset}; size_t tap1{offset - mTap[0].delay}; size_t tap2{offset - mTap[1].delay}; float z1, z2; ASSUME(samplesToDo > 0); const BiquadFilter filter{mFilter}; std::tie(z1, z2) = mFilter.getComponents(); for(size_t i{0u};i < samplesToDo;) { offset &= mask; tap1 &= mask; tap2 &= mask; size_t td{minz(mask+1 - maxz(offset, maxz(tap1, tap2)), samplesToDo-i)}; do { /* Feed the delay buffer's input first. */ delaybuf[offset] = samplesIn[0][i]; /* Get delayed output from the first and second taps. Use the * second tap for feedback. */ mTempBuffer[0][i] = delaybuf[tap1++]; mTempBuffer[1][i] = delaybuf[tap2++]; const float feedb{mTempBuffer[1][i++]}; /* Add feedback to the delay buffer with damping and attenuation. */ delaybuf[offset++] += filter.processOne(feedb, z1, z2) * mFeedGain; } while(--td); } mFilter.setComponents(z1, z2); mOffset = offset; for(ALsizei c{0};c < 2;c++) MixSamples({mTempBuffer[c], samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo, 0); } struct EchoStateFactory final : public EffectStateFactory { EffectState *create() override { return new EchoState{}; } }; } // namespace EffectStateFactory *EchoStateFactory_getFactory() { static EchoStateFactory EchoFactory{}; return &EchoFactory; }