/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "al/auxeffectslot.h" #include "alcmain.h" #include "alcontext.h" #include "alu.h" #include "alcomplex.h" namespace { using complex_d = std::complex; #define HIL_SIZE 1024 #define OVERSAMP (1<<2) #define HIL_STEP (HIL_SIZE / OVERSAMP) #define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1)) /* Define a Hann window, used to filter the HIL input and output. */ /* Making this constexpr seems to require C++14. */ std::array InitHannWindow() { std::array ret; /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ for(ALsizei i{0};i < HIL_SIZE>>1;i++) { ALdouble val = std::sin(al::MathDefs::Pi() * i / ALdouble{HIL_SIZE-1}); ret[i] = ret[HIL_SIZE-1-i] = val * val; } return ret; } alignas(16) const std::array HannWindow = InitHannWindow(); struct FshifterState final : public EffectState { /* Effect parameters */ size_t mCount{}; ALsizei mPhaseStep[2]{}; ALsizei mPhase[2]{}; ALdouble mSign[2]{}; /*Effects buffers*/ ALfloat mInFIFO[HIL_SIZE]{}; complex_d mOutFIFO[HIL_SIZE]{}; complex_d mOutputAccum[HIL_SIZE]{}; complex_d mAnalytic[HIL_SIZE]{}; complex_d mOutdata[BUFFERSIZE]{}; alignas(16) ALfloat mBufferOut[BUFFERSIZE]{}; /* Effect gains for each output channel */ struct { ALfloat Current[MAX_OUTPUT_CHANNELS]{}; ALfloat Target[MAX_OUTPUT_CHANNELS]{}; } mGains[2]; ALboolean deviceUpdate(const ALCdevice *device) override; void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(FshifterState) }; ALboolean FshifterState::deviceUpdate(const ALCdevice*) { /* (Re-)initializing parameters and clear the buffers. */ mCount = FIFO_LATENCY; std::fill(std::begin(mPhaseStep), std::end(mPhaseStep), 0); std::fill(std::begin(mPhase), std::end(mPhase), 0); std::fill(std::begin(mSign), std::end(mSign), 1.0); std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f); std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{}); std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{}); std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{}); for(auto &gain : mGains) { std::fill(std::begin(gain.Current), std::end(gain.Current), 0.0f); std::fill(std::begin(gain.Target), std::end(gain.Target), 0.0f); } return AL_TRUE; } void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) { const ALCdevice *device{context->mDevice.get()}; ALfloat step{props->Fshifter.Frequency / static_cast(device->Frequency)}; mPhaseStep[0] = mPhaseStep[1] = fastf2i(minf(step, 0.5f) * FRACTIONONE); switch(props->Fshifter.LeftDirection) { case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: mSign[0] = -1.0; break; case AL_FREQUENCY_SHIFTER_DIRECTION_UP: mSign[0] = 1.0; break; case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: mPhase[0] = 0; mPhaseStep[0] = 0; break; } switch (props->Fshifter.RightDirection) { case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: mSign[1] = -1.0; break; case AL_FREQUENCY_SHIFTER_DIRECTION_UP: mSign[1] = 1.0; break; case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: mPhase[1] = 0; mPhaseStep[1] = 0; break; } ALfloat coeffs[2][MAX_AMBI_CHANNELS]; CalcDirectionCoeffs({-1.0f, 0.0f, -1.0f}, 0.0f, coeffs[0]); CalcDirectionCoeffs({ 1.0f, 0.0f, -1.0f}, 0.0f, coeffs[1]); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs[0], slot->Params.Gain, mGains[0].Target); ComputePanGains(target.Main, coeffs[1], slot->Params.Gain, mGains[1].Target); } void FshifterState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { static constexpr complex_d complex_zero{0.0, 0.0}; ALfloat *RESTRICT BufferOut = mBufferOut; size_t j, k; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(HIL_SIZE-mCount, samplesToDo-base)}; ASSUME(todo > 0); /* Fill FIFO buffer with samples data */ k = mCount; for(j = 0;j < todo;j++,k++) { mInFIFO[k] = samplesIn[0][base+j]; mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY]; } mCount += todo; base += todo; /* Check whether FIFO buffer is filled */ if(mCount < HIL_SIZE) continue; mCount = FIFO_LATENCY; /* Real signal windowing and store in Analytic buffer */ for(k = 0;k < HIL_SIZE;k++) { mAnalytic[k].real(mInFIFO[k] * HannWindow[k]); mAnalytic[k].imag(0.0); } /* Processing signal by Discrete Hilbert Transform (analytical signal). */ complex_hilbert(mAnalytic); /* Windowing and add to output accumulator */ for(k = 0;k < HIL_SIZE;k++) mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k]; /* Shift accumulator, input & output FIFO */ for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k]; for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k]; for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero; for(k = 0;k < FIFO_LATENCY;k++) mInFIFO[k] = mInFIFO[k+HIL_STEP]; } /* Process frequency shifter using the analytic signal obtained. */ for(ALsizei c{0};c < 2;++c) { for(k = 0;k < samplesToDo;++k) { double phase = mPhase[c] * ((1.0 / FRACTIONONE) * al::MathDefs::Tau()); BufferOut[k] = static_cast(mOutdata[k].real()*std::cos(phase) + mOutdata[k].imag()*std::sin(phase)*mSign[c]); mPhase[c] += mPhaseStep[c]; mPhase[c] &= FRACTIONMASK; } /* Now, mix the processed sound data to the output. */ MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, maxz(samplesToDo, 512), 0); } } void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_FREQUENCY_SHIFTER_FREQUENCY: if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range"); props->Fshifter.Frequency = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); } } void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) { Fshifter_setParamf(props, context, param, vals[0]); } void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) { switch(param) { case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range"); props->Fshifter.LeftDirection = val; break; case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range"); props->Fshifter.RightDirection = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); } } void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) { Fshifter_setParami(props, context, param, vals[0]); } void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) { switch(param) { case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: *val = props->Fshifter.LeftDirection; break; case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: *val = props->Fshifter.RightDirection; break; default: context->setError(AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); } } void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) { Fshifter_getParami(props, context, param, vals); } void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_FREQUENCY_SHIFTER_FREQUENCY: *val = props->Fshifter.Frequency; break; default: context->setError(AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); } } void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) { Fshifter_getParamf(props, context, param, vals); } DEFINE_ALEFFECT_VTABLE(Fshifter); struct FshifterStateFactory final : public EffectStateFactory { EffectState *create() override { return new FshifterState{}; } EffectProps getDefaultProps() const noexcept override; const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; } }; EffectProps FshifterStateFactory::getDefaultProps() const noexcept { EffectProps props{}; props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY; props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION; props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION; return props; } } // namespace EffectStateFactory *FshifterStateFactory_getFactory() { static FshifterStateFactory FshifterFactory{}; return &FshifterFactory; }