/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include "al/auxeffectslot.h" #include "alcmain.h" #include "alcontext.h" #include "alu.h" #include "filters/biquad.h" #include "vecmat.h" namespace { #define MAX_UPDATE_SAMPLES 128 #define WAVEFORM_FRACBITS 24 #define WAVEFORM_FRACONE (1<(index) * (al::MathDefs::Tau() / ALfloat{WAVEFORM_FRACONE})); } inline ALfloat Saw(ALsizei index) { return static_cast(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; } inline ALfloat Square(ALsizei index) { return static_cast(((index>>(WAVEFORM_FRACBITS-2))&2) - 1); } inline ALfloat One(ALsizei) { return 1.0f; } template void Modulate(ALfloat *RESTRICT dst, ALsizei index, const ALsizei step, size_t todo) { for(size_t i{0u};i < todo;i++) { index += step; index &= WAVEFORM_FRACMASK; dst[i] = func(index); } } struct ModulatorState final : public EffectState { void (*mGetSamples)(ALfloat*RESTRICT, ALsizei, const ALsizei, size_t){}; ALsizei mIndex{0}; ALsizei mStep{1}; struct { BiquadFilter Filter; ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{}; ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{}; } mChans[MAX_AMBI_CHANNELS]; ALboolean deviceUpdate(const ALCdevice *device) override; void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span samplesOut) override; DEF_NEWDEL(ModulatorState) }; ALboolean ModulatorState::deviceUpdate(const ALCdevice*) { for(auto &e : mChans) { e.Filter.clear(); std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f); } return AL_TRUE; } void ModulatorState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) { const ALCdevice *device{context->mDevice.get()}; const float step{props->Modulator.Frequency / static_cast(device->Frequency)}; mStep = fastf2i(clampf(step*WAVEFORM_FRACONE, 0.0f, ALfloat{WAVEFORM_FRACONE-1})); if(mStep == 0) mGetSamples = Modulate; else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID) mGetSamples = Modulate; else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH) mGetSamples = Modulate; else /*if(props->Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/ mGetSamples = Modulate; ALfloat f0norm{props->Modulator.HighPassCutoff / static_cast(device->Frequency)}; f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); /* Bandwidth value is constant in octaves. */ mChans[0].Filter.setParams(BiquadType::HighPass, 1.0f, f0norm, BiquadFilter::rcpQFromBandwidth(f0norm, 0.75f)); for(size_t i{1u};i < slot->Wet.Buffer.size();++i) mChans[i].Filter.copyParamsFrom(mChans[0].Filter); mOutTarget = target.Main->Buffer; for(size_t i{0u};i < slot->Wet.Buffer.size();++i) { auto coeffs = GetAmbiIdentityRow(i); ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains); } } void ModulatorState::process(const size_t samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span samplesOut) { for(size_t base{0u};base < samplesToDo;) { alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES]; size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)}; mGetSamples(modsamples, mIndex, mStep, td); mIndex += (mStep*td) & WAVEFORM_FRACMASK; mIndex &= WAVEFORM_FRACMASK; ASSUME(numInput > 0); for(ALsizei c{0};c < numInput;c++) { alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES]; mChans[c].Filter.process(temps, &samplesIn[c][base], td); for(size_t i{0u};i < td;i++) temps[i] *= modsamples[i]; MixSamples({temps, td}, samplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, samplesToDo-base, base); } base += td; } } void Modulator_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_RING_MODULATOR_FREQUENCY: if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range"); props->Modulator.Frequency = val; break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range"); props->Modulator.HighPassCutoff = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); } } void Modulator_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) { Modulator_setParamf(props, context, param, vals[0]); } void Modulator_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) { switch(param) { case AL_RING_MODULATOR_FREQUENCY: case AL_RING_MODULATOR_HIGHPASS_CUTOFF: Modulator_setParamf(props, context, param, static_cast(val)); break; case AL_RING_MODULATOR_WAVEFORM: if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform"); props->Modulator.Waveform = val; break; default: context->setError(AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); } } void Modulator_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) { Modulator_setParami(props, context, param, vals[0]); } void Modulator_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) { switch(param) { case AL_RING_MODULATOR_FREQUENCY: *val = static_cast(props->Modulator.Frequency); break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: *val = static_cast(props->Modulator.HighPassCutoff); break; case AL_RING_MODULATOR_WAVEFORM: *val = props->Modulator.Waveform; break; default: context->setError(AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); } } void Modulator_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) { Modulator_getParami(props, context, param, vals); } void Modulator_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_RING_MODULATOR_FREQUENCY: *val = props->Modulator.Frequency; break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: *val = props->Modulator.HighPassCutoff; break; default: context->setError(AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); } } void Modulator_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) { Modulator_getParamf(props, context, param, vals); } DEFINE_ALEFFECT_VTABLE(Modulator); struct ModulatorStateFactory final : public EffectStateFactory { EffectState *create() override { return new ModulatorState{}; } EffectProps getDefaultProps() const noexcept override; const EffectVtable *getEffectVtable() const noexcept override { return &Modulator_vtable; } }; EffectProps ModulatorStateFactory::getDefaultProps() const noexcept { EffectProps props{}; props.Modulator.Frequency = AL_RING_MODULATOR_DEFAULT_FREQUENCY; props.Modulator.HighPassCutoff = AL_RING_MODULATOR_DEFAULT_HIGHPASS_CUTOFF; props.Modulator.Waveform = AL_RING_MODULATOR_DEFAULT_WAVEFORM; return props; } } // namespace EffectStateFactory *ModulatorStateFactory_getFactory() { static ModulatorStateFactory ModulatorFactory{}; return &ModulatorFactory; }