/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include "alc/effects/base.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/context.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/filters/biquad.h" #include "core/mixer.h" #include "intrusive_ptr.h" namespace { using uint = unsigned int; #define MAX_UPDATE_SAMPLES 128 #define WAVEFORM_FRACBITS 24 #define WAVEFORM_FRACONE (1<*2.0f / WAVEFORM_FRACONE}; return std::sin(static_cast(index) * scale); } inline float Saw(uint index) { return static_cast(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; } inline float Square(uint index) { return static_cast(static_cast((index>>(WAVEFORM_FRACBITS-2))&2) - 1); } inline float One(uint) { return 1.0f; } template void Modulate(float *RESTRICT dst, uint index, const uint step, size_t todo) { for(size_t i{0u};i < todo;i++) { index += step; index &= WAVEFORM_FRACMASK; dst[i] = func(index); } } struct ModulatorState final : public EffectState { void (*mGetSamples)(float*RESTRICT, uint, const uint, size_t){}; uint mIndex{0}; uint mStep{1}; struct { uint mTargetChannel{InvalidChannelIndex}; BiquadFilter mFilter; float mCurrentGain{}; float mTargetGain{}; } mChans[MaxAmbiChannels]; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(ModulatorState) }; void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*) { for(auto &e : mChans) { e.mTargetChannel = InvalidChannelIndex; e.mFilter.clear(); e.mCurrentGain = 0.0f; } } void ModulatorState::update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { const DeviceBase *device{context->mDevice}; const float step{props->Modulator.Frequency / static_cast(device->Frequency)}; mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1})); if(mStep == 0) mGetSamples = Modulate; else if(props->Modulator.Waveform == ModulatorWaveform::Sinusoid) mGetSamples = Modulate; else if(props->Modulator.Waveform == ModulatorWaveform::Sawtooth) mGetSamples = Modulate; else /*if(props->Modulator.Waveform == ModulatorWaveform::Square)*/ mGetSamples = Modulate; float f0norm{props->Modulator.HighPassCutoff / static_cast(device->Frequency)}; f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); /* Bandwidth value is constant in octaves. */ mChans[0].mFilter.setParamsFromBandwidth(BiquadType::HighPass, f0norm, 1.0f, 0.75f); for(size_t i{1u};i < slot->Wet.Buffer.size();++i) mChans[i].mFilter.copyParamsFrom(mChans[0].mFilter); mOutTarget = target.Main->Buffer; auto set_channel = [this](size_t idx, uint outchan, float outgain) { mChans[idx].mTargetChannel = outchan; mChans[idx].mTargetGain = outgain; }; target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel); } void ModulatorState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { for(size_t base{0u};base < samplesToDo;) { alignas(16) float modsamples[MAX_UPDATE_SAMPLES]; const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)}; mGetSamples(modsamples, mIndex, mStep, td); mIndex += static_cast(mStep * td); mIndex &= WAVEFORM_FRACMASK; auto chandata = std::begin(mChans); for(const auto &input : samplesIn) { const size_t outidx{chandata->mTargetChannel}; if(outidx != InvalidChannelIndex) { alignas(16) float temps[MAX_UPDATE_SAMPLES]; chandata->mFilter.process({&input[base], td}, temps); for(size_t i{0u};i < td;i++) temps[i] *= modsamples[i]; MixSamples({temps, td}, samplesOut[outidx].data()+base, chandata->mCurrentGain, chandata->mTargetGain, samplesToDo-base); } ++chandata; } base += td; } } struct ModulatorStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ModulatorState{}}; } }; } // namespace EffectStateFactory *ModulatorStateFactory_getFactory() { static ModulatorStateFactory ModulatorFactory{}; return &ModulatorFactory; }