/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alcmain.h" #include "alcomplex.h" #include "alcontext.h" #include "alnumeric.h" #include "alu.h" #include "effectslot.h" #include "math_defs.h" namespace { using complex_d = std::complex; #define STFT_SIZE 1024 #define STFT_HALF_SIZE (STFT_SIZE>>1) #define OVERSAMP (1<<2) #define STFT_STEP (STFT_SIZE / OVERSAMP) #define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1)) /* Define a Hann window, used to filter the STFT input and output. */ std::array InitHannWindow() { std::array ret; /* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */ for(size_t i{0};i < STFT_SIZE>>1;i++) { constexpr double scale{al::MathDefs::Pi() / double{STFT_SIZE}}; const double val{std::sin(static_cast(i+1) * scale)}; ret[i] = ret[STFT_SIZE-1-i] = val * val; } return ret; } alignas(16) const std::array HannWindow = InitHannWindow(); struct FrequencyBin { double Amplitude; double FreqBin; }; struct PshifterState final : public EffectState { /* Effect parameters */ size_t mCount; size_t mPos; uint mPitchShiftI; double mPitchShift; /* Effects buffers */ std::array mFIFO; std::array mLastPhase; std::array mSumPhase; std::array mOutputAccum; std::array mFftBuffer; std::array mAnalysisBuffer; std::array mSynthesisBuffer; alignas(16) FloatBufferLine mBufferOut; /* Effect gains for each output channel */ float mCurrentGains[MAX_OUTPUT_CHANNELS]; float mTargetGains[MAX_OUTPUT_CHANNELS]; void deviceUpdate(const ALCdevice *device, const Buffer &buffer) override; void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; DEF_NEWDEL(PshifterState) }; void PshifterState::deviceUpdate(const ALCdevice*, const Buffer&) { /* (Re-)initializing parameters and clear the buffers. */ mCount = 0; mPos = FIFO_LATENCY; mPitchShiftI = MixerFracOne; mPitchShift = 1.0; std::fill(mFIFO.begin(), mFIFO.end(), 0.0); std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0); std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0); std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0); std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{}); std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{}); std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{}); std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); } void PshifterState::update(const ALCcontext*, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune}; const float pitch{std::pow(2.0f, static_cast(tune) / 1200.0f)}; mPitchShiftI = fastf2u(pitch*MixerFracOne); mPitchShift = mPitchShiftI * double{1.0/MixerFracOne}; const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs.data(), slot->Gain, mTargetGains); } void PshifterState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { /* Pitch shifter engine based on the work of Stephan Bernsee. * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ */ /* Cycle offset per update expected of each frequency bin (bin 0 is none, * bin 1 is x1, bin 2 is x2, etc). */ constexpr double expected_cycles{al::MathDefs::Tau() / OVERSAMP}; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(STFT_STEP-mCount, samplesToDo-base)}; /* Retrieve the output samples from the FIFO and fill in the new input * samples. */ auto fifo_iter = mFIFO.begin()+mPos + mCount; std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base, [](double d) noexcept -> float { return static_cast(d); }); std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter); mCount += todo; base += todo; /* Check whether FIFO buffer is filled with new samples. */ if(mCount < STFT_STEP) break; mCount = 0; mPos = (mPos+STFT_STEP) & (mFIFO.size()-1); /* Time-domain signal windowing, store in FftBuffer, and apply a * forward FFT to get the frequency-domain signal. */ for(size_t src{mPos}, k{0u};src < STFT_SIZE;++src,++k) mFftBuffer[k] = mFIFO[src] * HannWindow[k]; for(size_t src{0u}, k{STFT_SIZE-mPos};src < mPos;++src,++k) mFftBuffer[k] = mFIFO[src] * HannWindow[k]; forward_fft(mFftBuffer); /* Analyze the obtained data. Since the real FFT is symmetric, only * STFT_HALF_SIZE+1 samples are needed. */ for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) { const double amplitude{std::abs(mFftBuffer[k])}; const double phase{std::arg(mFftBuffer[k])}; /* Compute phase difference and subtract expected phase difference */ double tmp{(phase - mLastPhase[k]) - static_cast(k)*expected_cycles}; /* Map delta phase into +/- Pi interval */ int qpd{double2int(tmp / al::MathDefs::Pi())}; tmp -= al::MathDefs::Pi() * (qpd + (qpd%2)); /* Get deviation from bin frequency from the +/- Pi interval */ tmp /= expected_cycles; /* Compute the k-th partials' true frequency and store the * amplitude and frequency bin in the analysis buffer. */ mAnalysisBuffer[k].Amplitude = amplitude; mAnalysisBuffer[k].FreqBin = static_cast(k) + tmp; /* Store the actual phase[k] for the next frame. */ mLastPhase[k] = phase; } /* Shift the frequency bins according to the pitch adjustment, * accumulating the amplitudes of overlapping frequency bins. */ std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{}); const size_t bin_count{minz(STFT_HALF_SIZE+1, (((STFT_HALF_SIZE+1)<>1) - 1)/mPitchShiftI + 1)}; for(size_t k{0u};k < bin_count;k++) { const size_t j{(k*mPitchShiftI + (MixerFracOne>>1)) >> MixerFracBits}; mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude; mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift; } /* Reconstruct the frequency-domain signal from the adjusted frequency * bins. */ for(size_t k{0u};k < STFT_HALF_SIZE+1;k++) { /* Calculate actual delta phase and accumulate it to get bin phase */ mSumPhase[k] += mSynthesisBuffer[k].FreqBin * expected_cycles; mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]); } for(size_t k{STFT_HALF_SIZE+1};k < STFT_SIZE;++k) mFftBuffer[k] = std::conj(mFftBuffer[STFT_SIZE-k]); /* Apply an inverse FFT to get the time-domain siganl, and accumulate * for the output with windowing. */ inverse_fft(mFftBuffer); for(size_t dst{mPos}, k{0u};dst < STFT_SIZE;++dst,++k) mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * (4.0/OVERSAMP/STFT_SIZE); for(size_t dst{0u}, k{STFT_SIZE-mPos};dst < mPos;++dst,++k) mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * (4.0/OVERSAMP/STFT_SIZE); /* Copy out the accumulated result, then clear for the next iteration. */ std::copy_n(mOutputAccum.begin() + mPos, STFT_STEP, mFIFO.begin() + mPos); std::fill_n(mOutputAccum.begin() + mPos, STFT_STEP, 0.0); } /* Now, mix the processed sound data to the output. */ MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains, maxz(samplesToDo, 512), 0); } struct PshifterStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new PshifterState{}}; } }; } // namespace EffectStateFactory *PshifterStateFactory_getFactory() { static PshifterStateFactory PshifterFactory{}; return &PshifterFactory; }