/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include "alc/effects/base.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/bufferline.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/mixer.h" #include "core/mixer/defs.h" #include "intrusive_ptr.h" #include "pffft.h" struct ContextBase; namespace { using uint = unsigned int; using complex_f = std::complex; constexpr size_t StftSize{1024}; constexpr size_t StftHalfSize{StftSize >> 1}; constexpr size_t OversampleFactor{8}; static_assert(StftSize%OversampleFactor == 0, "Factor must be a clean divisor of the size"); constexpr size_t StftStep{StftSize / OversampleFactor}; /* Define a Hann window, used to filter the STFT input and output. */ struct Windower { alignas(16) std::array mData; Windower() { /* Create lookup table of the Hann window for the desired size. */ for(size_t i{0};i < StftHalfSize;i++) { constexpr double scale{al::numbers::pi / double{StftSize}}; const double val{std::sin((static_cast(i)+0.5) * scale)}; mData[i] = mData[StftSize-1-i] = static_cast(val * val); } } }; const Windower gWindow{}; struct FrequencyBin { float Magnitude; float FreqBin; }; struct PshifterState final : public EffectState { /* Effect parameters */ size_t mCount; size_t mPos; uint mPitchShiftI; float mPitchShift; /* Effects buffers */ std::array mFIFO; std::array mLastPhase; std::array mSumPhase; std::array mOutputAccum; PFFFTSetup mFft; alignas(16) std::array mFftBuffer; alignas(16) std::array mFftWorkBuffer; std::array mAnalysisBuffer; std::array mSynthesisBuffer; alignas(16) FloatBufferLine mBufferOut; /* Effect gains for each output channel */ std::array mCurrentGains; std::array mTargetGains; void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; }; void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) { /* (Re-)initializing parameters and clear the buffers. */ mCount = 0; mPos = StftSize - StftStep; mPitchShiftI = MixerFracOne; mPitchShift = 1.0f; mFIFO.fill(0.0f); mLastPhase.fill(0.0f); mSumPhase.fill(0.0f); mOutputAccum.fill(0.0f); mFftBuffer.fill(0.0f); mAnalysisBuffer.fill(FrequencyBin{}); mSynthesisBuffer.fill(FrequencyBin{}); mCurrentGains.fill(0.0f); mTargetGains.fill(0.0f); if(!mFft) mFft = PFFFTSetup{StftSize, PFFFT_REAL}; } void PshifterState::update(const ContextBase*, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) { const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune}; const float pitch{std::pow(2.0f, static_cast(tune) / 1200.0f)}; mPitchShiftI = clampu(fastf2u(pitch*MixerFracOne), MixerFracHalf, MixerFracOne*2); mPitchShift = static_cast(mPitchShiftI) * float{1.0f/MixerFracOne}; static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f}); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs, slot->Gain, mTargetGains); } void PshifterState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { /* Pitch shifter engine based on the work of Stephan Bernsee. * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ */ /* Cycle offset per update expected of each frequency bin (bin 0 is none, * bin 1 is x1, bin 2 is x2, etc). */ constexpr float expected_cycles{al::numbers::pi_v*2.0f / OversampleFactor}; for(size_t base{0u};base < samplesToDo;) { const size_t todo{minz(StftStep-mCount, samplesToDo-base)}; /* Retrieve the output samples from the FIFO and fill in the new input * samples. */ auto fifo_iter = mFIFO.begin()+mPos + mCount; std::copy_n(fifo_iter, todo, mBufferOut.begin()+base); std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter); mCount += todo; base += todo; /* Check whether FIFO buffer is filled with new samples. */ if(mCount < StftStep) break; mCount = 0; mPos = (mPos+StftStep) & (mFIFO.size()-1); /* Time-domain signal windowing, store in FftBuffer, and apply a * forward FFT to get the frequency-domain signal. */ for(size_t src{mPos}, k{0u};src < StftSize;++src,++k) mFftBuffer[k] = mFIFO[src] * gWindow.mData[k]; for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k) mFftBuffer[k] = mFIFO[src] * gWindow.mData[k]; mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), PFFFT_FORWARD); /* Analyze the obtained data. Since the real FFT is symmetric, only * StftHalfSize+1 samples are needed. */ for(size_t k{0u};k < StftHalfSize+1;++k) { const auto cplx = (k == 0) ? complex_f{mFftBuffer[0]} : (k == StftHalfSize) ? complex_f{mFftBuffer[1]} : complex_f{mFftBuffer[k*2], mFftBuffer[k*2 + 1]}; const float magnitude{std::abs(cplx)}; const float phase{std::arg(cplx)}; /* Compute the phase difference from the last update and subtract * the expected phase difference for this bin. * * When oversampling, the expected per-update offset increments by * 1/OversampleFactor for every frequency bin. So, the offset wraps * every 'OversampleFactor' bin. */ const auto bin_offset = static_cast(k % OversampleFactor); float tmp{(phase - mLastPhase[k]) - bin_offset*expected_cycles}; /* Store the actual phase for the next update. */ mLastPhase[k] = phase; /* Normalize from pi, and wrap the delta between -1 and +1. */ tmp *= al::numbers::inv_pi_v; int qpd{float2int(tmp)}; tmp -= static_cast(qpd + (qpd%2)); /* Get deviation from bin frequency (-0.5 to +0.5), and account for * oversampling. */ tmp *= 0.5f * OversampleFactor; /* Compute the k-th partials' frequency bin target and store the * magnitude and frequency bin in the analysis buffer. We don't * need the "true frequency" since it's a linear relationship with * the bin. */ mAnalysisBuffer[k].Magnitude = magnitude; mAnalysisBuffer[k].FreqBin = static_cast(k) + tmp; } /* Shift the frequency bins according to the pitch adjustment, * accumulating the magnitudes of overlapping frequency bins. */ std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{}); constexpr size_t bin_limit{((StftHalfSize+1)<> MixerFracBits}; /* If more than two bins end up together, use the target frequency * bin for the one with the dominant magnitude. There might be a * better way to handle this, but it's better than last-index-wins. */ if(mAnalysisBuffer[k].Magnitude > mSynthesisBuffer[j].Magnitude) mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift; mSynthesisBuffer[j].Magnitude += mAnalysisBuffer[k].Magnitude; } /* Reconstruct the frequency-domain signal from the adjusted frequency * bins. */ for(size_t k{0u};k < StftHalfSize+1;k++) { /* Calculate the actual delta phase for this bin's target frequency * bin, and accumulate it to get the actual bin phase. */ float tmp{mSumPhase[k] + mSynthesisBuffer[k].FreqBin*expected_cycles}; /* Wrap between -pi and +pi for the sum. If mSumPhase is left to * grow indefinitely, it will lose precision and produce less exact * phase over time. */ tmp *= al::numbers::inv_pi_v; int qpd{float2int(tmp)}; tmp -= static_cast(qpd + (qpd%2)); mSumPhase[k] = tmp * al::numbers::pi_v; const complex_f cplx{std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k])}; if(k == 0) mFftBuffer[0] = cplx.real(); else if(k == StftHalfSize) mFftBuffer[1] = cplx.real(); else { mFftBuffer[k*2 + 0] = cplx.real(); mFftBuffer[k*2 + 1] = cplx.imag(); } } /* Apply an inverse FFT to get the time-domain signal, and accumulate * for the output with windowing. */ mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(), PFFFT_BACKWARD); static constexpr float scale{3.0f / OversampleFactor / StftSize}; for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k) mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale; for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k) mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale; /* Copy out the accumulated result, then clear for the next iteration. */ std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos); std::fill_n(mOutputAccum.begin() + mPos, StftStep, 0.0f); } /* Now, mix the processed sound data to the output. */ MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains.data(), mTargetGains.data(), maxz(samplesToDo, 512), 0); } struct PshifterStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new PshifterState{}}; } }; } // namespace EffectStateFactory *PshifterStateFactory_getFactory() { static PshifterStateFactory PshifterFactory{}; return &PshifterFactory; }