#include "config.h" #include #include #include "alcmain.h" #include "alu.h" #include "defs.h" #include "hrtfbase.h" namespace { inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) { return vals[0]; } inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) { ASSUME(istate.bsinc.m > 0); // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; const ALfloat pf{(frac & ((1< const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { ASSUME(numsamples > 0); ASSUME(increment > 0); ASSUME(frac >= 0); const InterpState istate{*state}; auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat { const ALfloat ret{Sampler(istate, src, frac)}; frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; return ret; }; std::generate_n(dst, numsamples, proc_sample); return dst; } } // namespace template<> const ALfloat *Resample_(const InterpState*, const ALfloat *RESTRICT src, ALsizei, ALint, ALfloat *RESTRICT dst, ALsizei dstlen) { ASSUME(dstlen > 0); #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((reinterpret_cast(src)&15) == (reinterpret_cast(dst)&15)) return src; #endif std::copy_n(src, dstlen, dst); return dst; } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { return DoResample(state, src, frac, increment, dst, dstlen); } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { return DoResample(state, src, frac, increment, dst, dstlen); } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { return DoResample(state, src-1, frac, increment, dst, dstlen); } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) { return DoResample(state, src-state->bsinc.l, frac, increment, dst, dstlen); } static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, const HrirArray &Coeffs, const ALfloat left, const ALfloat right) { ASSUME(IrSize >= 2); for(ALsizei c{0};c < IrSize;++c) { Values[c][0] += Coeffs[c][0] * left; Values[c][1] += Coeffs[c][1] * right; } } template<> void MixHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, MixHrtfFilter *hrtfparams, const ALsizei BufferSize) { MixHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) { MixHrtfBlendBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *AccumSamples, DirectHrtfState *State, const ALsizei BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); } template<> void Mix_(const ALfloat *data, const al::span OutBuffer, ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize) { ASSUME(BufferSize > 0); const ALfloat delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; for(FloatBufferLine &output : OutBuffer) { ALfloat *RESTRICT dst{output.data()+OutPos}; ALfloat gain{*CurrentGains}; const ALfloat diff{*TargetGains - gain}; ALsizei pos{0}; if(std::fabs(diff) > std::numeric_limits::epsilon()) { ALsizei minsize{mini(BufferSize, Counter)}; const ALfloat step{diff * delta}; ALfloat step_count{0.0f}; for(;pos < minsize;pos++) { dst[pos] += data[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = *TargetGains; else gain += step*step_count; *CurrentGains = gain; } ++CurrentGains; ++TargetGains; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) dst[pos] += data[pos]*gain; } } /* Basically the inverse of the above. Rather than one input going to multiple * outputs (each with its own gain), it's multiple inputs (each with its own * gain) going to one output. This applies one row (vs one column) of a matrix * transform. And as the matrices are more or less static once set up, no * stepping is necessary. */ template<> void MixRow_(FloatBufferLine &OutBuffer, const ALfloat *Gains, const al::span InSamples, const ALsizei InPos, const ALsizei BufferSize) { ASSUME(BufferSize > 0); for(const FloatBufferLine &input : InSamples) { const ALfloat *RESTRICT src{input.data()+InPos}; const ALfloat gain{*(Gains++)}; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(ALsizei i{0};i < BufferSize;i++) OutBuffer[i] += src[i] * gain; } }