#include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alcmain.h" #include "alu.h" #include "hrtf.h" #include "defs.h" #include "hrtfbase.h" template<> const ALfloat *Resample_(const InterpState*, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, const al::span dst) { const int32x4_t increment4 = vdupq_n_s32(increment*4); const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); alignas(16) ALsizei pos_[4], frac_[4]; int32x4_t pos4, frac4; ASSUME(frac >= 0); ASSUME(increment > 0); InitiatePositionArrays(frac, increment, frac_, pos_, 4); frac4 = vld1q_s32(frac_); pos4 = vld1q_s32(pos_); auto dst_iter = dst.begin(); const auto aligned_end = (dst.size()&~3) + dst_iter; while(dst_iter != aligned_end) { const int pos0 = vgetq_lane_s32(pos4, 0); const int pos1 = vgetq_lane_s32(pos4, 1); const int pos2 = vgetq_lane_s32(pos4, 2); const int pos3 = vgetq_lane_s32(pos4, 3); const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]}; const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]}; /* val1 + (val2-val1)*mu */ const float32x4_t r0 = vsubq_f32(val2, val1); const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); const float32x4_t out = vmlaq_f32(val1, mu, r0); vst1q_f32(dst_iter, out); dst_iter += 4; frac4 = vaddq_s32(frac4, increment4); pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); frac4 = vandq_s32(frac4, fracMask4); } /* NOTE: These four elements represent the position *after* the last four * samples, so the lowest element is the next position to resample. */ ALsizei pos{vgetq_lane_s32(pos4, 0)}; frac = vgetq_lane_s32(frac4, 0); while(dst_iter != dst.end()) { *(dst_iter++) = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst.begin(); } template<> const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, const al::span dst) { const ALfloat *const filter{state->bsinc.filter}; const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)}; const ALsizei m{state->bsinc.m}; ASSUME(m > 0); ASSUME(increment > 0); ASSUME(frac >= 0); src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; const ALfloat pf{(frac & ((1<> 2; const float32x4_t pf4 = vdupq_n_f32(pf); const float *fil{filter + m*pi*4}; const float *scd{fil + m}; const float *phd{scd + m}; const float *spd{phd + m}; ALsizei td{m >> 2}; size_t j{0u}; do { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const float32x4_t f4 = vmlaq_f32( vmlaq_f32(vld1q_f32(fil), sf4, vld1q_f32(scd)), pf4, vmlaq_f32(vld1q_f32(phd), sf4, vld1q_f32(spd))); fil += 4; scd += 4; phd += 4; spd += 4; /* r += f*src */ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); j += 4; } while(--td); } r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), vrev64_f32(vget_low_f32(r4)))); out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst.begin(); } static inline void ApplyCoeffs(size_t /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, const HrirArray &Coeffs, const ALfloat left, const ALfloat right) { ASSUME(IrSize >= 2); float32x4_t leftright4; { float32x2_t leftright2 = vdup_n_f32(0.0); leftright2 = vset_lane_f32(left, leftright2, 0); leftright2 = vset_lane_f32(right, leftright2, 1); leftright4 = vcombine_f32(leftright2, leftright2); } for(ALsizei c{0};c < IrSize;c += 2) { float32x4_t vals = vld1q_f32((float32_t*)&Values[c][0]); float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); vals = vmlaq_f32(vals, coefs, leftright4); vst1q_f32((float32_t*)&Values[c][0], vals); } } template<> void MixHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALsizei IrSize, MixHrtfFilter *hrtfparams, const size_t BufferSize) { MixHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALsizei IrSize, const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize) { MixHrtfBlendBase(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *AccumSamples, DirectHrtfState *State, const size_t BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); } template<> void Mix_(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) { const ALfloat delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const bool reached_target{InSamples.size() >= Counter}; const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end(); const auto aligned_end = minz(InSamples.size(), (min_end-InSamples.begin()+3) & ~3) + InSamples.begin(); for(FloatBufferLine &output : OutBuffer) { ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; ALfloat gain{*CurrentGains}; const ALfloat diff{*TargetGains - gain}; auto in_iter = InSamples.begin(); if(std::fabs(diff) > std::numeric_limits::epsilon()) { const ALfloat step{diff * delta}; ALfloat step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if(ptrdiff_t todo{(min_end-in_iter) >> 2}) { const float32x4_t four4{vdupq_n_f32(4.0f)}; const float32x4_t step4{vdupq_n_f32(step)}; const float32x4_t gain4{vdupq_n_f32(gain)}; float32x4_t step_count4{vsetq_lane_f32(0.0f, vsetq_lane_f32(1.0f, vsetq_lane_f32(2.0f, vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3), 2), 1), 0 )}; do { const float32x4_t val4 = vld1q_f32(in_iter); float32x4_t dry4 = vld1q_f32(dst); dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); step_count4 = vaddq_f32(step_count4, four4); vst1q_f32(dst, dry4); in_iter += 4; dst += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after * the last four mixed samples, so the lowest element * represents the next step count to apply. */ step_count = vgetq_lane_f32(step_count4, 0); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ while(in_iter != min_end) { *(dst++) += *(in_iter++) * (gain + step*step_count); step_count += 1.0f; } if(reached_target) gain = *TargetGains; else gain += step*step_count; *CurrentGains = gain; /* Mix until pos is aligned with 4 or the mix is done. */ while(in_iter != aligned_end) *(dst++) += *(in_iter++) * gain; } ++CurrentGains; ++TargetGains; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2}) { const float32x4_t gain4 = vdupq_n_f32(gain); do { const float32x4_t val4 = vld1q_f32(in_iter); float32x4_t dry4 = vld1q_f32(dst); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(dst, dry4); in_iter += 4; dst += 4; } while(--todo); } while(in_iter != InSamples.end()) *(dst++) += *(in_iter++) * gain; } } template<> void MixRow_(const al::span OutBuffer, const al::span Gains, const float *InSamples, const size_t InStride) { for(const ALfloat gain : Gains) { const ALfloat *RESTRICT src{InSamples}; InSamples += InStride; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; auto out_iter = OutBuffer.begin(); if(size_t todo{OutBuffer.size() >> 2}) { const float32x4_t gain4{vdupq_n_f32(gain)}; do { const float32x4_t val4 = vld1q_f32(src); float32x4_t dry4 = vld1q_f32(out_iter); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(out_iter, dry4); out_iter += 4; src += 4; } while(--todo); } std::transform(out_iter, OutBuffer.end(), src, out_iter, [gain](const ALfloat cur, const ALfloat src) -> ALfloat { return cur + src*gain; }); } }