#include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alcmain.h" #include "alu.h" #include "bsinc_defs.h" #include "defs.h" #include "hrtfbase.h" struct SSETag; struct BSincTag; struct FastBSincTag; namespace { #define FRAC_PHASE_BITDIFF (FRACTIONBITS - BSINC_PHASE_BITS) #define FRAC_PHASE_DIFFONE (1<= MIN_IR_LENGTH); /* This isn't technically correct to test alignment, but it's true for * systems that support SSE, which is the only one that needs to know the * alignment of Values (which alternates between 8- and 16-byte aligned). */ if(reinterpret_cast(Values)&0x8) { __m128 imp0, imp1; __m128 coeffs{_mm_load_ps(&Coeffs[0][0])}; __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))}; imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals); ALuint td{(IrSize>>1) - 1}; size_t i{1}; do { coeffs = _mm_load_ps(&Coeffs[i+1][0]); vals = _mm_load_ps(&Values[i][0]); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Values[i][0], vals); imp0 = imp1; i += 2; } while(--td); vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0])); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals); } else { for(size_t i{0};i < IrSize;i += 2) { const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])}; __m128 vals{_mm_load_ps(&Values[i][0])}; vals = MLA4(vals, lrlr, coeffs); _mm_store_ps(&Values[i][0], vals); } } } } // namespace template<> const float *Resample_(const InterpState *state, const float *RESTRICT src, ALuint frac, ALuint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; const size_t m{state->bsinc.m}; src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const ALuint pi{frac >> FRAC_PHASE_BITDIFF}; const float pf{static_cast(frac & (FRAC_PHASE_DIFFONE-1)) * (1.0f/FRAC_PHASE_DIFFONE)}; // Apply the scale and phase interpolated filter. __m128 r4{_mm_setzero_ps()}; { const __m128 pf4{_mm_set1_ps(pf)}; const float *fil{filter + m*pi*4}; const float *phd{fil + m}; const float *scd{phd + m}; const float *spd{scd + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const __m128 f4 = MLA4( MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])), pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j]))); /* r += f*src */ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); j += 4; } while(--td); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); out_sample = _mm_cvtss_f32(r4); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst.data(); } template<> const float *Resample_(const InterpState *state, const float *RESTRICT src, ALuint frac, ALuint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const size_t m{state->bsinc.m}; src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const ALuint pi{frac >> FRAC_PHASE_BITDIFF}; const float pf{static_cast(frac & (FRAC_PHASE_DIFFONE-1)) * (1.0f/FRAC_PHASE_DIFFONE)}; // Apply the phase interpolated filter. __m128 r4{_mm_setzero_ps()}; { const __m128 pf4{_mm_set1_ps(pf)}; const float *fil{filter + m*pi*4}; const float *phd{fil + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = fil + pf*phd */ const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j])); /* r += f*src */ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); j += 4; } while(--td); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); out_sample = _mm_cvtss_f32(r4); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst.data(); } template<> void MixHrtf_(const float *InSamples, float2 *AccumSamples, const ALuint IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { MixHrtfBase(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const ALuint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { MixHrtfBlendBase(InSamples, AccumSamples, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *AccumSamples, DirectHrtfState *State, const size_t BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); } template<> void Mix_(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const bool reached_target{InSamples.size() >= Counter}; const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end(); const auto aligned_end = minz(static_cast(min_end-InSamples.begin()+3) & ~3u, InSamples.size()) + InSamples.begin(); for(FloatBufferLine &output : OutBuffer) { float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; float gain{*CurrentGains}; const float diff{*TargetGains - gain}; auto in_iter = InSamples.begin(); if(!(std::fabs(diff) > std::numeric_limits::epsilon())) gain = *TargetGains; else { const float step{diff * delta}; float step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if(ptrdiff_t todo{(min_end-in_iter) >> 2}) { const __m128 four4{_mm_set1_ps(4.0f)}; const __m128 step4{_mm_set1_ps(step)}; const __m128 gain4{_mm_set1_ps(gain)}; __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; do { const __m128 val4{_mm_load_ps(in_iter)}; __m128 dry4{_mm_load_ps(dst)}; /* dry += val * (gain + step*step_count) */ dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); _mm_store_ps(dst, dry4); step_count4 = _mm_add_ps(step_count4, four4); in_iter += 4; dst += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after * the last four mixed samples, so the lowest element * represents the next step count to apply. */ step_count = _mm_cvtss_f32(step_count4); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ while(in_iter != min_end) { *(dst++) += *(in_iter++) * (gain + step*step_count); step_count += 1.0f; } if(reached_target) gain = *TargetGains; else gain += step*step_count; /* Mix until pos is aligned with 4 or the mix is done. */ while(in_iter != aligned_end) *(dst++) += *(in_iter++) * gain; } *CurrentGains = gain; ++CurrentGains; ++TargetGains; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(ptrdiff_t todo{(InSamples.end()-in_iter) >> 2}) { const __m128 gain4{_mm_set1_ps(gain)}; do { const __m128 val4{_mm_load_ps(in_iter)}; __m128 dry4{_mm_load_ps(dst)}; dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(dst, dry4); in_iter += 4; dst += 4; } while(--todo); } while(in_iter != InSamples.end()) *(dst++) += *(in_iter++) * gain; } }