/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "al/auxeffectslot.h" #include "alcmain.h" #include "alconfig.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "alstring.h" #include "alu.h" #include "ambdec.h" #include "ambidefs.h" #include "bformatdec.h" #include "bs2b.h" #include "devformat.h" #include "hrtf.h" #include "logging.h" #include "math_defs.h" #include "opthelpers.h" #include "uhjfilter.h" constexpr std::array AmbiScale::FromN3D; constexpr std::array AmbiScale::FromSN3D; constexpr std::array AmbiScale::FromFuMa; constexpr std::array AmbiIndex::FromFuMa; constexpr std::array AmbiIndex::FromFuMa2D; constexpr std::array AmbiIndex::FromACN; constexpr std::array AmbiIndex::From2D; constexpr std::array AmbiIndex::OrderFromChannel; constexpr std::array AmbiIndex::OrderFrom2DChannel; namespace { using namespace std::placeholders; using std::chrono::seconds; using std::chrono::nanoseconds; inline const char *GetLabelFromChannel(Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case UpperFrontLeft: return "upper-front-left"; case UpperFrontRight: return "upper-front-right"; case UpperBackLeft: return "upper-back-left"; case UpperBackRight: return "upper-back-right"; case LowerFrontLeft: return "lower-front-left"; case LowerFrontRight: return "lower-front-right"; case LowerBackLeft: return "lower-back-left"; case LowerBackRight: return "lower-back-right"; case Aux0: return "aux-0"; case Aux1: return "aux-1"; case Aux2: return "aux-2"; case Aux3: return "aux-3"; case Aux4: return "aux-4"; case Aux5: return "aux-5"; case Aux6: return "aux-6"; case Aux7: return "aux-7"; case Aux8: return "aux-8"; case Aux9: return "aux-9"; case Aux10: return "aux-10"; case Aux11: return "aux-11"; case Aux12: return "aux-12"; case Aux13: return "aux-13"; case Aux14: return "aux-14"; case Aux15: return "aux-15"; case MaxChannels: break; } return "(unknown)"; } void AllocChannels(ALCdevice *device, const ALuint main_chans, const ALuint real_chans) { TRACE("Channel config, Main: %u, Real: %u\n", main_chans, real_chans); /* Allocate extra channels for any post-filter output. */ const ALuint num_chans{main_chans + real_chans}; TRACE("Allocating %u channels, %zu bytes\n", num_chans, num_chans*sizeof(device->MixBuffer[0])); device->MixBuffer.resize(num_chans); al::span buffer{device->MixBuffer.data(), device->MixBuffer.size()}; device->Dry.Buffer = buffer.first(main_chans); buffer = buffer.subspan(main_chans); if(real_chans != 0) { device->RealOut.Buffer = buffer.first(real_chans); buffer = buffer.subspan(real_chans); } else device->RealOut.Buffer = device->Dry.Buffer; } struct ChannelMap { Channel ChanName; ALfloat Config[MAX_AMBI2D_CHANNELS]; }; bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint (&speakermap)[MAX_OUTPUT_CHANNELS]) { auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> ALuint { /* NOTE: AmbDec does not define any standard speaker names, however * for this to work we have to by able to find the output channel * the speaker definition corresponds to. Therefore, OpenAL Soft * requires these channel labels to be recognized: * * LF = Front left * RF = Front right * LS = Side left * RS = Side right * LB = Back left * RB = Back right * CE = Front center * CB = Back center * * Additionally, surround51 will acknowledge back speakers for side * channels, and surround51rear will acknowledge side speakers for * back channels, to avoid issues with an ambdec expecting 5.1 to * use the side channels when the device is configured for back, * and vice-versa. */ Channel ch{}; if(speaker.Name == "LF") ch = FrontLeft; else if(speaker.Name == "RF") ch = FrontRight; else if(speaker.Name == "CE") ch = FrontCenter; else if(speaker.Name == "LS") { if(device->FmtChans == DevFmtX51Rear) ch = BackLeft; else ch = SideLeft; } else if(speaker.Name == "RS") { if(device->FmtChans == DevFmtX51Rear) ch = BackRight; else ch = SideRight; } else if(speaker.Name == "LB") { if(device->FmtChans == DevFmtX51) ch = SideLeft; else ch = BackLeft; } else if(speaker.Name == "RB") { if(device->FmtChans == DevFmtX51) ch = SideRight; else ch = BackRight; } else if(speaker.Name == "CB") ch = BackCenter; else { const char *name{speaker.Name.c_str()}; unsigned int n; char c; if(sscanf(name, "AUX%u%c", &n, &c) == 1 && n < 16) ch = static_cast(Aux0+n); else { ERR("AmbDec speaker label \"%s\" not recognized\n", name); return INVALID_CHANNEL_INDEX; } } const ALuint chidx{GetChannelIdxByName(device->RealOut, ch)}; if(chidx == INVALID_CHANNEL_INDEX) ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str()); return chidx; }; std::transform(conf->Speakers.begin(), conf->Speakers.end(), std::begin(speakermap), map_spkr); /* Return success if no invalid entries are found. */ auto spkrmap_end = std::begin(speakermap) + conf->Speakers.size(); return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end; } constexpr ChannelMap MonoCfg[1] = { { FrontCenter, { 1.0f } }, }, StereoCfg[2] = { { FrontLeft, { 5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f } }, { FrontRight, { 5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f } }, }, QuadCfg[4] = { { BackLeft, { 3.53553391e-1f, 2.04124145e-1f, -2.04124145e-1f } }, { FrontLeft, { 3.53553391e-1f, 2.04124145e-1f, 2.04124145e-1f } }, { FrontRight, { 3.53553391e-1f, -2.04124145e-1f, 2.04124145e-1f } }, { BackRight, { 3.53553391e-1f, -2.04124145e-1f, -2.04124145e-1f } }, }, X51SideCfg[4] = { { SideLeft, { 3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f } }, { FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f } }, { FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f } }, { SideRight, { 3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f } }, }, X51RearCfg[4] = { { BackLeft, { 3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f } }, { FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f } }, { FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f } }, { BackRight, { 3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f } }, }, X61Cfg[6] = { { SideLeft, { 2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f } }, { FrontLeft, { 1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f } }, { FrontRight, { 1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f } }, { SideRight, { 2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f } }, { BackCenter, { 2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f } }, }, X71Cfg[6] = { { BackLeft, { 2.04124145e-1f, 1.08880247e-1f, -1.88586120e-1f, -1.29099444e-1f, 7.45355993e-2f, 3.73460789e-2f, 0.00000000e+0f } }, { SideLeft, { 2.04124145e-1f, 2.17760495e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.49071198e-1f, -3.73460789e-2f, 0.00000000e+0f } }, { FrontLeft, { 2.04124145e-1f, 1.08880247e-1f, 1.88586120e-1f, 1.29099444e-1f, 7.45355993e-2f, 3.73460789e-2f, 0.00000000e+0f } }, { FrontRight, { 2.04124145e-1f, -1.08880247e-1f, 1.88586120e-1f, -1.29099444e-1f, 7.45355993e-2f, -3.73460789e-2f, 0.00000000e+0f } }, { SideRight, { 2.04124145e-1f, -2.17760495e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.49071198e-1f, 3.73460789e-2f, 0.00000000e+0f } }, { BackRight, { 2.04124145e-1f, -1.08880247e-1f, -1.88586120e-1f, 1.29099444e-1f, 7.45355993e-2f, -3.73460789e-2f, 0.00000000e+0f } }, }; void InitNearFieldCtrl(ALCdevice *device, ALfloat ctrl_dist, ALuint order, bool is3d) { /* NFC is only used when AvgSpeakerDist is greater than 0. */ const char *devname{device->DeviceName.c_str()}; if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f)) return; device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f); TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist); static const ALuint chans_per_order2d[MAX_AMBI_ORDER+1]{ 1, 2, 2, 2 }; static const ALuint chans_per_order3d[MAX_AMBI_ORDER+1]{ 1, 3, 5, 7 }; const al::span chans_per_order{is3d ? chans_per_order3d : chans_per_order2d, order+1u}; auto iter = std::copy(chans_per_order.begin(), chans_per_order.end(), std::begin(device->NumChannelsPerOrder)); std::fill(iter, std::end(device->NumChannelsPerOrder), 0u); } void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf, const ALuint (&speakermap)[MAX_OUTPUT_CHANNELS]) { auto get_max = std::bind(maxf, _1, std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2)); const ALfloat maxdist{ std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), float{0.0f}, get_max)}; const char *devname{device->DeviceName.c_str()}; if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f)) return; const auto distSampleScale = static_cast(device->Frequency)/SPEEDOFSOUNDMETRESPERSEC; const auto ChanDelay = device->ChannelDelay.as_span(); size_t total{0u}; for(size_t i{0u};i < conf->Speakers.size();i++) { const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i]; const ALuint chan{speakermap[i]}; /* Distance compensation only delays in steps of the sample rate. This * is a bit less accurate since the delay time falls to the nearest * sample time, but it's far simpler as it doesn't have to deal with * phase offsets. This means at 48khz, for instance, the distance delay * will be in steps of about 7 millimeters. */ ALfloat delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)}; if(delay > ALfloat{MAX_DELAY_LENGTH-1}) { ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n", speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1); delay = ALfloat{MAX_DELAY_LENGTH-1}; } ChanDelay[chan].Length = static_cast(delay); ChanDelay[chan].Gain = speaker.Distance / maxdist; TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan, speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain); /* Round up to the next 4th sample, so each channel buffer starts * 16-byte aligned. */ total += RoundUp(ChanDelay[chan].Length, 4); } if(total > 0) { device->ChannelDelay.setSampleCount(total); ChanDelay[0].Buffer = device->ChannelDelay.getSamples(); auto set_bufptr = [](const DistanceComp::DistData &last, const DistanceComp::DistData &cur) -> DistanceComp::DistData { DistanceComp::DistData ret{cur}; ret.Buffer = last.Buffer + RoundUp(last.Length, 4); return ret; }; std::partial_sum(ChanDelay.begin(), ChanDelay.end(), ChanDelay.begin(), set_bufptr); } } auto GetAmbiScales(AmbiNorm scaletype) noexcept -> const std::array& { if(scaletype == AmbiNorm::FuMa) return AmbiScale::FromFuMa; if(scaletype == AmbiNorm::SN3D) return AmbiScale::FromSN3D; return AmbiScale::FromN3D; } auto GetAmbiLayout(AmbiLayout layouttype) noexcept -> const std::array& { if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa; return AmbiIndex::FromACN; } void InitPanning(ALCdevice *device) { al::span chanmap; ALuint coeffcount{}; switch(device->FmtChans) { case DevFmtMono: chanmap = MonoCfg; coeffcount = 1; break; case DevFmtStereo: chanmap = StereoCfg; coeffcount = 3; break; case DevFmtQuad: chanmap = QuadCfg; coeffcount = 3; break; case DevFmtX51: chanmap = X51SideCfg; coeffcount = 5; break; case DevFmtX51Rear: chanmap = X51RearCfg; coeffcount = 5; break; case DevFmtX61: chanmap = X61Cfg; coeffcount = 5; break; case DevFmtX71: chanmap = X71Cfg; coeffcount = 7; break; case DevFmtAmbi3D: break; } if(device->FmtChans == DevFmtAmbi3D) { const char *devname{device->DeviceName.c_str()}; const std::array &acnmap = GetAmbiLayout(device->mAmbiLayout); const std::array &n3dscale = GetAmbiScales(device->mAmbiScale); /* For DevFmtAmbi3D, the ambisonic order is already set. */ const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)}; std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap), [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/n3dscale[acn], acn}; } ); AllocChannels(device, static_cast(count), 0); ALfloat nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)}; if(nfc_delay > 0.0f) InitNearFieldCtrl(device, nfc_delay * SPEEDOFSOUNDMETRESPERSEC, device->mAmbiOrder, true); } else { ChannelDec chancoeffs[MAX_OUTPUT_CHANNELS]{}; ALuint outcount{0}; for(size_t i{0u};i < chanmap.size();++i) { const ALuint idx{GetChannelIdxByName(device->RealOut, chanmap[i].ChanName)}; if(idx == INVALID_CHANNEL_INDEX) { ERR("Failed to find %s channel in device\n", GetLabelFromChannel(chanmap[i].ChanName)); continue; } outcount = maxu(outcount, idx+1u); std::copy_n(chanmap[i].Config, coeffcount, chancoeffs[idx]); } /* For non-DevFmtAmbi3D, set the ambisonic order given the mixing * channel count. Built-in speaker decoders are always 2D, so just * reverse that calculation. */ device->mAmbiOrder = (coeffcount-1) / 2; std::transform(AmbiIndex::From2D.begin(), AmbiIndex::From2D.begin()+coeffcount, std::begin(device->Dry.AmbiMap), [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; } ); AllocChannels(device, coeffcount, device->channelsFromFmt()); TRACE("Enabling %s-order%s ambisonic decoder\n", (coeffcount > 5) ? "third" : (coeffcount > 3) ? "second" : "first", ""); device->AmbiDecoder = BFormatDec::Create(coeffcount, al::span{chancoeffs, outcount}); } } void InitCustomPanning(ALCdevice *device, bool hqdec, const AmbDecConf *conf, const ALuint (&speakermap)[MAX_OUTPUT_CHANNELS]) { if(!hqdec && conf->FreqBands != 1) ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n", conf->XOverFreq); const ALuint order{(conf->ChanMask > AMBI_2ORDER_MASK) ? 3u : (conf->ChanMask > AMBI_1ORDER_MASK) ? 2u : 1u}; device->mAmbiOrder = order; ALuint count; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { count = static_cast(AmbiChannelsFromOrder(order)); std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count, std::begin(device->Dry.AmbiMap), [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } else { count = static_cast(Ambi2DChannelsFromOrder(order)); std::transform(AmbiIndex::From2D.begin(), AmbiIndex::From2D.begin()+count, std::begin(device->Dry.AmbiMap), [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; } ); } AllocChannels(device, count, device->channelsFromFmt()); TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", (!hqdec || conf->FreqBands == 1) ? "single" : "dual", (conf->ChanMask > AMBI_2ORDER_MASK) ? "third" : (conf->ChanMask > AMBI_1ORDER_MASK) ? "second" : "first", (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : "" ); device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap); auto accum_spkr_dist = std::bind(std::plus{}, _1, std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2)); const float avg_dist{ std::accumulate(conf->Speakers.begin(), conf->Speakers.end(), 0.0f, accum_spkr_dist) / static_cast(conf->Speakers.size())}; InitNearFieldCtrl(device, avg_dist, order, !!(conf->ChanMask&AMBI_PERIPHONIC_MASK)); InitDistanceComp(device, conf, speakermap); } void InitHrtfPanning(ALCdevice *device) { constexpr float PI{al::MathDefs::Pi()}; constexpr float PI_2{PI / 2.0f}; constexpr float PI_4{PI_2 / 2.0f}; constexpr float PI3_4{PI_4 * 3.0f}; static const float CornerElev{static_cast(std::atan2(1.0, std::sqrt(2.0)))}; static const AngularPoint AmbiPoints1O[]{ { EvRadians{ CornerElev}, AzRadians{ -PI_4} }, { EvRadians{ CornerElev}, AzRadians{-PI3_4} }, { EvRadians{ CornerElev}, AzRadians{ PI_4} }, { EvRadians{ CornerElev}, AzRadians{ PI3_4} }, { EvRadians{-CornerElev}, AzRadians{ -PI_4} }, { EvRadians{-CornerElev}, AzRadians{-PI3_4} }, { EvRadians{-CornerElev}, AzRadians{ PI_4} }, { EvRadians{-CornerElev}, AzRadians{ PI3_4} }, }, AmbiPoints2O[]{ { EvRadians{ -CornerElev}, AzRadians{ -PI_4} }, { EvRadians{ -CornerElev}, AzRadians{ -PI3_4} }, { EvRadians{ CornerElev}, AzRadians{ -PI3_4} }, { EvRadians{ CornerElev}, AzRadians{ PI3_4} }, { EvRadians{ CornerElev}, AzRadians{ PI_4} }, { EvRadians{ -CornerElev}, AzRadians{ PI_4} }, { EvRadians{ -CornerElev}, AzRadians{ PI3_4} }, { EvRadians{ CornerElev}, AzRadians{ -PI_4} }, { EvRadians{-1.205932499e+00f}, AzRadians{ -PI_2} }, { EvRadians{ 1.205932499e+00f}, AzRadians{ PI_2} }, { EvRadians{-1.205932499e+00f}, AzRadians{ PI_2} }, { EvRadians{ 1.205932499e+00f}, AzRadians{ -PI_2} }, { EvRadians{ 0.0f}, AzRadians{-1.205932499e+00f} }, { EvRadians{ 0.0f}, AzRadians{-1.935660155e+00f} }, { EvRadians{ 0.0f}, AzRadians{ 1.205932499e+00f} }, { EvRadians{ 0.0f}, AzRadians{ 1.935660155e+00f} }, { EvRadians{-3.648638281e-01f}, AzRadians{ PI} }, { EvRadians{ 3.648638281e-01f}, AzRadians{ PI} }, { EvRadians{ 3.648638281e-01f}, AzRadians{ 0.0f} }, { EvRadians{-3.648638281e-01f}, AzRadians{ 0.0f} }, }; static const float AmbiMatrix1O[][MAX_AMBI_CHANNELS]{ { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f }, { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f }, }, AmbiMatrix2O[][MAX_AMBI_CHANNELS]{ { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f }, { 5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f }, { 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f }, { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f }, { 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f }, { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f }, { 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f }, { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f }, { 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f }, { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f }, { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f }, { 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f }, { 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f }, }; static const float AmbiOrderHFGain1O[MAX_AMBI_ORDER+1]{ 2.000000000e+00f, 1.154700538e+00f }, AmbiOrderHFGain2O[MAX_AMBI_ORDER+1]{ 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f }; static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch"); static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch"); /* Don't bother with HOA when using full HRTF rendering. Nothing needs it, * and it eases the CPU/memory load. */ device->mRenderMode = HrtfRender; ALuint ambi_order{1}; if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode")) { struct HrtfModeEntry { char name[8]; RenderMode mode; ALuint order; }; static const HrtfModeEntry hrtf_modes[]{ { "full", HrtfRender, 1 }, { "ambi1", NormalRender, 1 }, { "ambi2", NormalRender, 2 }, }; const char *mode{modeopt->c_str()}; if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0) { ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2"); mode = "ambi2"; } auto match_entry = [mode](const HrtfModeEntry &entry) -> bool { return al::strcasecmp(mode, entry.name) == 0; }; auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry); if(iter == std::end(hrtf_modes)) ERR("Unexpected hrtf-mode: %s\n", mode); else { device->mRenderMode = iter->mode; ambi_order = iter->order; } } TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order, (((ambi_order%100)/10) == 1) ? "th" : ((ambi_order%10) == 1) ? "st" : ((ambi_order%10) == 2) ? "nd" : ((ambi_order%10) == 3) ? "rd" : "th", (device->mRenderMode == HrtfRender) ? "+ Full " : "", device->HrtfName.c_str()); al::span AmbiPoints{AmbiPoints1O}; const float (*AmbiMatrix)[MAX_AMBI_CHANNELS]{AmbiMatrix1O}; al::span AmbiOrderHFGain{AmbiOrderHFGain1O}; if(ambi_order >= 2) { AmbiPoints = AmbiPoints2O; AmbiMatrix = AmbiMatrix2O; AmbiOrderHFGain = AmbiOrderHFGain2O; } device->mAmbiOrder = ambi_order; const size_t count{AmbiChannelsFromOrder(ambi_order)}; device->mHrtfState = DirectHrtfState::Create(count); std::transform(AmbiIndex::FromACN.begin(), AmbiIndex::FromACN.begin()+count, std::begin(device->Dry.AmbiMap), [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; } ); AllocChannels(device, static_cast(count), device->channelsFromFmt()); HrtfStore *Hrtf{device->mHrtf.get()}; BuildBFormatHrtf(Hrtf, device->mHrtfState.get(), AmbiPoints, AmbiMatrix, AmbiOrderHFGain); InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true); } void InitUhjPanning(ALCdevice *device) { /* UHJ is always 2D first-order. */ constexpr size_t count{Ambi2DChannelsFromOrder(1)}; device->mAmbiOrder = 1; auto acnmap_end = AmbiIndex::FromFuMa.begin() + count; std::transform(AmbiIndex::FromFuMa.begin(), acnmap_end, std::begin(device->Dry.AmbiMap), [](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f/AmbiScale::FromFuMa[acn], acn}; } ); AllocChannels(device, ALuint{count}, device->channelsFromFmt()); } } // namespace void aluInitRenderer(ALCdevice *device, ALint hrtf_id, HrtfRequestMode hrtf_appreq, HrtfRequestMode hrtf_userreq) { /* Hold the HRTF the device last used, in case it's used again. */ HrtfStorePtr old_hrtf{std::move(device->mHrtf)}; device->mHrtfState = nullptr; device->mHrtf = nullptr; device->HrtfName.clear(); device->mRenderMode = NormalRender; if(device->FmtChans != DevFmtStereo) { old_hrtf = nullptr; if(hrtf_appreq == Hrtf_Enable) device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; const char *layout{nullptr}; switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: /* fall-through */ case DevFmtX51Rear: layout = "surround51"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; /* Mono, Stereo, and Ambisonics output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtAmbi3D: break; } const char *devname{device->DeviceName.c_str()}; ALuint speakermap[MAX_OUTPUT_CHANNELS]; AmbDecConf *pconf{nullptr}; AmbDecConf conf{}; if(layout) { if(auto decopt = ConfigValueStr(devname, "decoder", layout)) { if(!conf.load(decopt->c_str())) ERR("Failed to load layout file %s\n", decopt->c_str()); else if(conf.Speakers.size() > MAX_OUTPUT_CHANNELS) ERR("Unsupported speaker count %zu (max %d)\n", conf.Speakers.size(), MAX_OUTPUT_CHANNELS); else if(conf.ChanMask > AMBI_3ORDER_MASK) ERR("Unsupported channel mask 0x%04x (max 0x%x)\n", conf.ChanMask, AMBI_3ORDER_MASK); else if(MakeSpeakerMap(device, &conf, speakermap)) pconf = &conf; } } if(!pconf) InitPanning(device); else { int hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1)}; InitCustomPanning(device, !!hqdec, pconf, speakermap); } if(device->AmbiDecoder) device->PostProcess = &ALCdevice::ProcessAmbiDec; return; } bool headphones{device->IsHeadphones != AL_FALSE}; if(device->Type != Loopback) { if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode")) { const char *mode{modeopt->c_str()}; if(al::strcasecmp(mode, "headphones") == 0) headphones = true; else if(al::strcasecmp(mode, "speakers") == 0) headphones = false; else if(al::strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } } if(hrtf_userreq == Hrtf_Default) { bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable); if(!usehrtf) goto no_hrtf; device->HrtfStatus = ALC_HRTF_ENABLED_SOFT; if(headphones && hrtf_appreq != Hrtf_Disable) device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT; } else { if(hrtf_userreq != Hrtf_Enable) { if(hrtf_appreq == Hrtf_Enable) device->HrtfStatus = ALC_HRTF_DENIED_SOFT; goto no_hrtf; } device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT; } if(device->HrtfList.empty()) device->HrtfList = EnumerateHrtf(device->DeviceName.c_str()); if(hrtf_id >= 0 && static_cast(hrtf_id) < device->HrtfList.size()) { const char *devname{device->DeviceName.c_str()}; const std::string &hrtfname = device->HrtfList[static_cast(hrtf_id)]; if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, devname, device->Frequency)}) { device->mHrtf = std::move(hrtf); device->HrtfName = hrtfname; } } if(!device->mHrtf) { const char *devname{device->DeviceName.c_str()}; auto find_hrtf = [device,devname](const std::string &hrtfname) -> bool { HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, devname, device->Frequency)}; if(!hrtf) return false; device->mHrtf = std::move(hrtf); device->HrtfName = hrtfname; return true; }; std::find_if(device->HrtfList.cbegin(), device->HrtfList.cend(), find_hrtf); } if(device->mHrtf) { old_hrtf = nullptr; InitHrtfPanning(device); device->PostProcess = &ALCdevice::ProcessHrtf; return; } device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; no_hrtf: old_hrtf = nullptr; device->mRenderMode = StereoPair; if(device->Type != Loopback) { if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level")) { if(*cflevopt > 0 && *cflevopt <= 6) { device->Bs2b = al::make_unique(); bs2b_set_params(device->Bs2b.get(), *cflevopt, static_cast(device->Frequency)); TRACE("BS2B enabled\n"); InitPanning(device); device->PostProcess = &ALCdevice::ProcessBs2b; return; } } } if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding")) { const char *mode{encopt->c_str()}; if(al::strcasecmp(mode, "uhj") == 0) device->mRenderMode = NormalRender; else if(al::strcasecmp(mode, "panpot") != 0) ERR("Unexpected stereo-encoding: %s\n", mode); } if(device->mRenderMode == NormalRender) { device->Uhj_Encoder = al::make_unique(); TRACE("UHJ enabled\n"); InitUhjPanning(device); device->PostProcess = &ALCdevice::ProcessUhj; return; } TRACE("Stereo rendering\n"); InitPanning(device); device->PostProcess = &ALCdevice::ProcessAmbiDec; } void aluInitEffectPanning(ALeffectslot *slot, ALCdevice *device) { const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)}; slot->MixBuffer.resize(count); slot->MixBuffer.shrink_to_fit(); auto acnmap_end = AmbiIndex::FromACN.begin() + count; auto iter = std::transform(AmbiIndex::FromACN.begin(), acnmap_end, slot->Wet.AmbiMap.begin(), [](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f, acn}; } ); std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{}); slot->Wet.Buffer = {slot->MixBuffer.data(), slot->MixBuffer.size()}; } void CalcAmbiCoeffs(const float y, const float z, const float x, const float spread, const al::span coeffs) { /* Zeroth-order */ coeffs[0] = 1.0f; /* ACN 0 = 1 */ /* First-order */ coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */ coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */ coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */ /* Second-order */ const float xx{x*x}, yy{y*y}, zz{z*z}; coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */ coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */ coeffs[6] = 1.118033989f * (3.0f*zz - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */ coeffs[8] = 1.936491673f * (xx - yy); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ coeffs[9] = 2.091650066f * y * (3.0f*xx - yy); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */ coeffs[11] = 1.620185175f * y * (5.0f*zz - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ coeffs[12] = 1.322875656f * z * (5.0f*zz - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ coeffs[13] = 1.620185175f * x * (5.0f*zz - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ coeffs[14] = 5.123475383f * z * (xx - yy); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ coeffs[15] = 2.091650066f * x * (xx - 3.0f*yy); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ /* Fourth-order */ /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */ /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */ /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */ /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */ /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */ /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */ /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */ /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */ /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */ if(spread > 0.0f) { /* Implement the spread by using a spherical source that subtends the * angle spread. See: * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3 * * When adjusted for N3D normalization instead of SN3D, these * calculations are: * * ZH0 = -sqrt(pi) * (-1+ca); * ZH1 = 0.5*sqrt(pi) * sa*sa; * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1); * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1); * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3); * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1); * * The gain of the source is compensated for size, so that the * loudness doesn't depend on the spread. Thus: * * ZH0 = 1.0f; * ZH1 = 0.5f * (ca+1.0f); * ZH2 = 0.5f * (ca+1.0f)*ca; * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f); * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca; * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f); */ const float ca{std::cos(spread * 0.5f)}; /* Increase the source volume by up to +3dB for a full spread. */ const float scale{std::sqrt(1.0f + spread/al::MathDefs::Tau())}; const float ZH0_norm{scale}; const float ZH1_norm{scale * 0.5f * (ca+1.f)}; const float ZH2_norm{scale * 0.5f * (ca+1.f)*ca}; const float ZH3_norm{scale * 0.125f * (ca+1.f)*(5.f*ca*ca-1.f)}; /* Zeroth-order */ coeffs[0] *= ZH0_norm; /* First-order */ coeffs[1] *= ZH1_norm; coeffs[2] *= ZH1_norm; coeffs[3] *= ZH1_norm; /* Second-order */ coeffs[4] *= ZH2_norm; coeffs[5] *= ZH2_norm; coeffs[6] *= ZH2_norm; coeffs[7] *= ZH2_norm; coeffs[8] *= ZH2_norm; /* Third-order */ coeffs[9] *= ZH3_norm; coeffs[10] *= ZH3_norm; coeffs[11] *= ZH3_norm; coeffs[12] *= ZH3_norm; coeffs[13] *= ZH3_norm; coeffs[14] *= ZH3_norm; coeffs[15] *= ZH3_norm; } } void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain, const al::span gains) { auto ambimap = mix->AmbiMap.cbegin(); auto iter = std::transform(ambimap, ambimap+mix->Buffer.size(), gains.begin(), [coeffs,ingain](const BFChannelConfig &chanmap) noexcept -> float { return chanmap.Scale * coeffs[chanmap.Index] * ingain; } ); std::fill(iter, gains.end(), 0.0f); }