#include "config.h" #include "uhjfilter.h" #ifdef HAVE_SSE_INTRINSICS #include #endif #include #include #include "AL/al.h" #include "alcomplex.h" #include "alnumeric.h" #include "opthelpers.h" namespace { using complex_d = std::complex; std::array GenerateFilter() { /* Some notes on this filter construction. * * A wide-band phase-shift filter needs a delay to maintain linearity. A * dirac impulse in the center of a time-domain buffer represents a filter * passing all frequencies through as-is with a pure delay. Converting that * to the frequency domain, adjusting the phase of each frequency bin by * +90 degrees, then converting back to the time domain, results in a FIR * filter that applies a +90 degree wide-band phase-shift. * * A particularly notable aspect of the time-domain filter response is that * every other coefficient is 0. This allows doubling the effective size of * the filter, by storing only the non-0 coefficients and double-stepping * over the input to apply it. * * Additionally, the resulting filter is independent of the sample rate. * The same filter can be applied regardless of the device's sample rate * and achieve the same effect. */ constexpr size_t fft_size{Uhj2Encoder::sFilterSize * 2}; constexpr size_t half_size{fft_size / 2}; /* Generate a frequency domain impulse with a +90 degree phase offset. * Reconstruct the mirrored frequencies to convert to the time domain. */ auto fftBuffer = std::make_unique(fft_size); std::fill_n(fftBuffer.get(), fft_size, complex_d{}); fftBuffer[half_size] = 1.0; forward_fft({fftBuffer.get(), fft_size}); for(size_t i{0};i < half_size+1;++i) fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; for(size_t i{half_size+1};i < fft_size;++i) fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); inverse_fft({fftBuffer.get(), fft_size}); /* Reverse the filter for simpler processing, and store only the non-0 * coefficients. */ auto ret = std::make_unique>(); auto fftiter = fftBuffer.get() + half_size + (Uhj2Encoder::sFilterSize-1); for(float &coeff : *ret) { coeff = static_cast(fftiter->real() / double{fft_size}); fftiter -= 2; } return *ret; } alignas(16) const auto PShiftCoeffs = GenerateFilter(); void allpass_process(al::span dst, const float *RESTRICT src) { #ifdef HAVE_SSE_INTRINSICS size_t pos{0}; if(size_t todo{dst.size()>>1}) { do { __m128 r04{_mm_setzero_ps()}; __m128 r14{_mm_setzero_ps()}; for(size_t j{0};j < PShiftCoeffs.size();j+=4) { const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])}; const __m128 s0{_mm_loadu_ps(&src[j*2])}; const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); } r04 = _mm_add_ps(r04, _mm_shuffle_ps(r04, r04, _MM_SHUFFLE(0, 1, 2, 3))); r04 = _mm_add_ps(r04, _mm_movehl_ps(r04, r04)); dst[pos++] += _mm_cvtss_f32(r04); r14 = _mm_add_ps(r14, _mm_shuffle_ps(r14, r14, _MM_SHUFFLE(0, 1, 2, 3))); r14 = _mm_add_ps(r14, _mm_movehl_ps(r14, r14)); dst[pos++] += _mm_cvtss_f32(r14); src += 2; } while(--todo); } if((dst.size()&1)) { __m128 r4{_mm_setzero_ps()}; for(size_t j{0};j < PShiftCoeffs.size();j+=4) { const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])}; /* NOTE: This could alternatively be done with two unaligned loads * and a shuffle. Which would be better? */ const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); dst[pos] += _mm_cvtss_f32(r4); } #else for(float &output : dst) { float ret{0.0f}; for(size_t j{0};j < PShiftCoeffs.size();++j) ret += src[j*2] * PShiftCoeffs[j]; output += ret; ++src; } #endif } } // namespace /* Encoding 2-channel UHJ from B-Format is done as: * * S = 0.9396926*W + 0.1855740*X * D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y * * Left = (S + D)/2.0 * Right = (S - D)/2.0 * * where j is a wide-band +90 degree phase shift. * * The phase shift is done using a FIR filter derived from an FFT'd impulse * with the desired shift. */ void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const FloatBufferLine *InSamples, const size_t SamplesToDo) { ASSUME(SamplesToDo > 0); float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())}; float *RESTRICT right{al::assume_aligned<16>(RightOut.data())}; const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())}; const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())}; const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())}; /* Combine the previously delayed mid/side signal with the input. */ /* S = 0.9396926*W + 0.1855740*X */ auto miditer = std::copy(mMidDelay.cbegin(), mMidDelay.cend(), mMid.begin()); std::transform(winput, winput+SamplesToDo, xinput, miditer, [](const float w, const float x) noexcept -> float { return 0.9396926f*w + 0.1855740f*x; }); /* D = 0.6554516*Y */ auto sideiter = std::copy(mSideDelay.cbegin(), mSideDelay.cend(), mSide.begin()); std::transform(yinput, yinput+SamplesToDo, sideiter, [](const float y) noexcept -> float { return 0.6554516f*y; }); /* Include any existing direct signal in the mid/side buffers. */ for(size_t i{0};i < SamplesToDo;++i,++miditer) *miditer += left[i] + right[i]; for(size_t i{0};i < SamplesToDo;++i,++sideiter) *sideiter += left[i] - right[i]; /* Copy the future samples back to the delay buffers for next time. */ std::copy_n(mMid.cbegin()+SamplesToDo, mMidDelay.size(), mMidDelay.begin()); std::copy_n(mSide.cbegin()+SamplesToDo, mSideDelay.size(), mSideDelay.begin()); /* Now add the all-passed signal into the side signal. */ /* D += j(-0.3420201*W + 0.5098604*X) */ auto tmpiter = std::copy(mSideHistory.cbegin(), mSideHistory.cend(), mTemp.begin()); std::transform(winput, winput+SamplesToDo, xinput, tmpiter, [](const float w, const float x) noexcept -> float { return -0.3420201f*w + 0.5098604f*x; }); std::copy_n(mTemp.cbegin()+SamplesToDo, mSideHistory.size(), mSideHistory.begin()); allpass_process({mSide.data(), SamplesToDo}, mTemp.data()); /* Left = (S + D)/2.0 */ for(size_t i{0};i < SamplesToDo;i++) left[i] = (mMid[i] + mSide[i]) * 0.5f; /* Right = (S - D)/2.0 */ for(size_t i{0};i < SamplesToDo;i++) right[i] = (mMid[i] - mSide[i]) * 0.5f; }