/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "voice.h" #include #include #include #include #include #include #include #include #include #include #include #include "alcmain.h" #include "albyte.h" #include "alconfig.h" #include "alcontext.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "alstring.h" #include "alu.h" #include "async_event.h" #include "bformatdec.h" #include "buffer_storage.h" #include "core/cpu_caps.h" #include "core/devformat.h" #include "core/filters/biquad.h" #include "core/filters/nfc.h" #include "core/filters/splitter.h" #include "core/fmt_traits.h" #include "core/hrtf.h" #include "core/logging.h" #include "core/mixer/defs.h" #include "core/mixer/hrtfdefs.h" #include "core/resampler_limits.h" #include "inprogext.h" #include "opthelpers.h" #include "ringbuffer.h" #include "threads.h" #include "vector.h" #include "voice_change.h" struct CTag; #ifdef HAVE_SSE struct SSETag; #endif #ifdef HAVE_NEON struct NEONTag; #endif struct CopyTag; static_assert(!(sizeof(Voice::BufferLine)&15), "Voice::BufferLine must be a multiple of 16 bytes"); Resampler ResamplerDefault{Resampler::Linear}; MixerFunc MixSamples{Mix_}; namespace { using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize); using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize); HrtfMixerFunc MixHrtfSamples{MixHrtf_}; HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_}; inline MixerFunc SelectMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Mix_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Mix_; #endif return Mix_; } inline HrtfMixerFunc SelectHrtfMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtf_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtf_; #endif return MixHrtf_; } inline HrtfMixerBlendFunc SelectHrtfBlendMixer() { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtfBlend_; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtfBlend_; #endif return MixHrtfBlend_; } } // namespace void aluInitMixer() { if(auto resopt = ConfigValueStr(nullptr, nullptr, "resampler")) { struct ResamplerEntry { const char name[16]; const Resampler resampler; }; constexpr ResamplerEntry ResamplerList[]{ { "none", Resampler::Point }, { "point", Resampler::Point }, { "linear", Resampler::Linear }, { "cubic", Resampler::Cubic }, { "bsinc12", Resampler::BSinc12 }, { "fast_bsinc12", Resampler::FastBSinc12 }, { "bsinc24", Resampler::BSinc24 }, { "fast_bsinc24", Resampler::FastBSinc24 }, }; const char *str{resopt->c_str()}; if(al::strcasecmp(str, "bsinc") == 0) { WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str); str = "bsinc12"; } else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0) { WARN("Resampler option \"%s\" is deprecated, using cubic\n", str); str = "cubic"; } auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList), [str](const ResamplerEntry &entry) -> bool { return al::strcasecmp(str, entry.name) == 0; }); if(iter == std::end(ResamplerList)) ERR("Invalid resampler: %s\n", str); else ResamplerDefault = iter->resampler; } MixSamples = SelectMixer(); MixHrtfBlendSamples = SelectHrtfBlendMixer(); MixHrtfSamples = SelectHrtfMixer(); } namespace { void SendSourceStoppedEvent(ALCcontext *context, uint id) { RingBuffer *ring{context->mAsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if(evt_vec.first.len < 1) return; AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}}; evt->u.srcstate.id = id; evt->u.srcstate.state = VChangeState::Stop; ring->writeAdvance(1); } const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst, const al::span src, int type) { switch(type) { case AF_None: lpfilter.clear(); hpfilter.clear(); break; case AF_LowPass: lpfilter.process(src, dst); hpfilter.clear(); return dst; case AF_HighPass: lpfilter.clear(); hpfilter.process(src, dst); return dst; case AF_BandPass: DualBiquad{lpfilter, hpfilter}.process(src, dst); return dst; } return src.data(); } void LoadSamples(const al::span dstSamples, const size_t dstOffset, const al::byte *src, const size_t srcOffset, const FmtType srctype, const FmtChannels srcchans, const size_t samples) noexcept { #define HANDLE_FMT(T) case T: \ { \ constexpr size_t sampleSize{sizeof(al::FmtTypeTraits::Type)}; \ if(srcchans == FmtUHJ2) \ { \ constexpr size_t srcstep{2u}; \ src += srcOffset*srcstep*sampleSize; \ al::LoadSampleArray(dstSamples[0].data() + dstOffset, src, \ srcstep, samples); \ al::LoadSampleArray(dstSamples[1].data() + dstOffset, \ src + sampleSize, srcstep, samples); \ std::fill_n(dstSamples[2].data() + dstOffset, samples, 0.0f); \ } \ else \ { \ const size_t srcstep{dstSamples.size()}; \ src += srcOffset*srcstep*sampleSize; \ for(auto &dst : dstSamples) \ { \ al::LoadSampleArray(dst.data() + dstOffset, src, srcstep, \ samples); \ src += sampleSize; \ } \ } \ } \ break switch(srctype) { HANDLE_FMT(FmtUByte); HANDLE_FMT(FmtShort); HANDLE_FMT(FmtFloat); HANDLE_FMT(FmtDouble); HANDLE_FMT(FmtMulaw); HANDLE_FMT(FmtAlaw); } #undef HANDLE_FMT } void LoadBufferStatic(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem, const size_t dataPosInt, const FmtType sampleType, const FmtChannels sampleChannels, const size_t samplesToLoad, const al::span voiceSamples) { const uint loopStart{buffer->mLoopStart}; const uint loopEnd{buffer->mLoopEnd}; ASSUME(loopEnd > loopStart); /* If current pos is beyond the loop range, do not loop */ if(!bufferLoopItem || dataPosInt >= loopEnd) { /* Load what's left to play from the buffer */ const size_t remaining{minz(samplesToLoad, buffer->mSampleLen-dataPosInt)}; LoadSamples(voiceSamples, MaxResamplerEdge, buffer->mSamples, dataPosInt, sampleType, sampleChannels, remaining); if(const size_t toFill{samplesToLoad - remaining}) { for(auto &chanbuffer : voiceSamples) { auto srcsamples = chanbuffer.data() + MaxResamplerEdge - 1 + remaining; std::fill_n(srcsamples + 1, toFill, *srcsamples); } } } else { /* Load what's left of this loop iteration */ const size_t remaining{minz(samplesToLoad, loopEnd-dataPosInt)}; LoadSamples(voiceSamples, MaxResamplerEdge, buffer->mSamples, dataPosInt, sampleType, sampleChannels, remaining); /* Load repeats of the loop to fill the buffer. */ const auto loopSize = static_cast(loopEnd - loopStart); size_t samplesLoaded{remaining}; while(const size_t toFill{minz(samplesToLoad - samplesLoaded, loopSize)}) { LoadSamples(voiceSamples, MaxResamplerEdge + samplesLoaded, buffer->mSamples, loopStart, sampleType, sampleChannels, toFill); samplesLoaded += toFill; } } } void LoadBufferCallback(VoiceBufferItem *buffer, const size_t numCallbackSamples, const FmtType sampleType, const FmtChannels sampleChannels, const size_t samplesToLoad, const al::span voiceSamples) { /* Load what's left to play from the buffer */ const size_t remaining{minz(samplesToLoad, numCallbackSamples)}; LoadSamples(voiceSamples, MaxResamplerEdge, buffer->mSamples, 0, sampleType, sampleChannels, remaining); if(const size_t toFill{samplesToLoad - remaining}) { for(auto &chanbuffer : voiceSamples) { auto srcsamples = chanbuffer.data() + MaxResamplerEdge - 1 + remaining; std::fill_n(srcsamples + 1, toFill, *srcsamples); } } } void LoadBufferQueue(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem, size_t dataPosInt, const FmtType sampleType, const FmtChannels sampleChannels, const size_t samplesToLoad, const al::span voiceSamples) { /* Crawl the buffer queue to fill in the temp buffer */ size_t samplesLoaded{0}; while(buffer && samplesLoaded != samplesToLoad) { if(dataPosInt >= buffer->mSampleLen) { dataPosInt -= buffer->mSampleLen; buffer = buffer->mNext.load(std::memory_order_acquire); if(!buffer) buffer = bufferLoopItem; continue; } const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer->mSampleLen-dataPosInt)}; LoadSamples(voiceSamples, MaxResamplerEdge+samplesLoaded, buffer->mSamples, dataPosInt, sampleType, sampleChannels, remaining); samplesLoaded += remaining; if(samplesLoaded == samplesToLoad) break; dataPosInt = 0; buffer = buffer->mNext.load(std::memory_order_acquire); if(!buffer) buffer = bufferLoopItem; } if(const size_t toFill{samplesToLoad - samplesLoaded}) { size_t chanidx{0}; for(auto &chanbuffer : voiceSamples) { auto srcsamples = chanbuffer.data() + MaxResamplerEdge - 1 + samplesLoaded; std::fill_n(srcsamples + 1, toFill, *srcsamples); ++chanidx; } } } void DoHrtfMix(const float *samples, const uint DstBufferSize, DirectParams &parms, const float TargetGain, const uint Counter, uint OutPos, ALCdevice *Device) { const uint IrSize{Device->mIrSize}; auto &HrtfSamples = Device->HrtfSourceData; /* Source HRTF mixing needs to include the direct delay so it remains * aligned with the direct mix's HRTF filtering. */ float2 *AccumSamples{Device->HrtfAccumData + HrtfDirectDelay}; /* Copy the HRTF history and new input samples into a temp buffer. */ auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(), std::begin(HrtfSamples)); std::copy_n(samples, DstBufferSize, src_iter); /* Copy the last used samples back into the history buffer for later. */ std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(), parms.Hrtf.History.begin()); /* If fading and this is the first mixing pass, fade between the IRs. */ uint fademix{0u}; if(Counter && OutPos == 0) { fademix = minu(DstBufferSize, Counter); float gain{TargetGain}; /* The new coefficients need to fade in completely since they're * replacing the old ones. To keep the gain fading consistent, * interpolate between the old and new target gains given how much of * the fade time this mix handles. */ if(Counter > fademix) { const float a{static_cast(fademix) / static_cast(Counter)}; gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a); } MixHrtfFilter hrtfparams{ parms.Hrtf.Target.Coeffs, parms.Hrtf.Target.Delay, 0.0f, gain / static_cast(fademix)}; MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams, fademix); /* Update the old parameters with the result. */ parms.Hrtf.Old = parms.Hrtf.Target; parms.Hrtf.Old.Gain = gain; OutPos += fademix; } if(fademix < DstBufferSize) { const uint todo{DstBufferSize - fademix}; float gain{TargetGain}; /* Interpolate the target gain if the gain fading lasts longer than * this mix. */ if(Counter > DstBufferSize) { const float a{static_cast(todo) / static_cast(Counter-fademix)}; gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a); } MixHrtfFilter hrtfparams{ parms.Hrtf.Target.Coeffs, parms.Hrtf.Target.Delay, parms.Hrtf.Old.Gain, (gain - parms.Hrtf.Old.Gain) / static_cast(todo)}; MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo); /* Store the now-current gain for next time. */ parms.Hrtf.Old.Gain = gain; } } void DoNfcMix(const al::span samples, FloatBufferLine *OutBuffer, DirectParams &parms, const float *TargetGains, const uint Counter, const uint OutPos, ALCdevice *Device) { using FilterProc = void (NfcFilter::*)(const al::span, float*); static constexpr FilterProc NfcProcess[MaxAmbiOrder+1]{ nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3}; float *CurrentGains{parms.Gains.Current.data()}; MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos); ++OutBuffer; ++CurrentGains; ++TargetGains; const al::span nfcsamples{Device->NfcSampleData, samples.size()}; size_t order{1}; while(const size_t chancount{Device->NumChannelsPerOrder[order]}) { (parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data()); MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos); OutBuffer += chancount; CurrentGains += chancount; TargetGains += chancount; if(++order == MaxAmbiOrder+1) break; } } } // namespace void Voice::mix(const State vstate, ALCcontext *Context, const uint SamplesToDo) { static constexpr std::array SilentTarget{}; ASSUME(SamplesToDo > 0); /* Get voice info */ uint DataPosInt{mPosition.load(std::memory_order_relaxed)}; uint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)}; VoiceBufferItem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)}; VoiceBufferItem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)}; const uint increment{mStep}; if UNLIKELY(increment < 1) { /* If the voice is supposed to be stopping but can't be mixed, just * stop it before bailing. */ if(vstate == Stopping) mPlayState.store(Stopped, std::memory_order_release); return; } ALCdevice *Device{Context->mDevice.get()}; const uint NumSends{Device->NumAuxSends}; ResamplerFunc Resample{(increment == MixerFracOne && DataPosFrac == 0) ? Resample_ : mResampler}; uint Counter{(mFlags&VoiceIsFading) ? SamplesToDo : 0}; if(!Counter) { /* No fading, just overwrite the old/current params. */ for(auto &chandata : mChans) { { DirectParams &parms = chandata.mDryParams; if(!(mFlags&VoiceHasHrtf)) parms.Gains.Current = parms.Gains.Target; else parms.Hrtf.Old = parms.Hrtf.Target; } for(uint send{0};send < NumSends;++send) { if(mSend[send].Buffer.empty()) continue; SendParams &parms = chandata.mWetParams[send]; parms.Gains.Current = parms.Gains.Target; } } } else if UNLIKELY(!BufferListItem) Counter = std::min(Counter, 64u); const uint PostPadding{MaxResamplerEdge + ((mFmtChannels==FmtUHJ2 || mFmtChannels==FmtUHJ3 || mFmtChannels==FmtUHJ4) ? uint{UhjDecoder::sFilterDelay} : 0u)}; uint buffers_done{0u}; uint OutPos{0u}; do { /* Figure out how many buffer samples will be needed */ uint DstBufferSize{SamplesToDo - OutPos}; uint SrcBufferSize; if(increment <= MixerFracOne) { /* Calculate the last written dst sample pos. */ uint64_t DataSize64{DstBufferSize - 1}; /* Calculate the last read src sample pos. */ DataSize64 = (DataSize64*increment + DataPosFrac) >> MixerFracBits; /* +1 to get the src sample count, include padding. */ DataSize64 += 1 + PostPadding; /* Result is guaranteed to be <= BufferLineSize+ResamplerPrePadding * since we won't use more src samples than dst samples+padding. */ SrcBufferSize = static_cast(DataSize64); } else { uint64_t DataSize64{DstBufferSize}; /* Calculate the end src sample pos, include padding. */ DataSize64 = (DataSize64*increment + DataPosFrac) >> MixerFracBits; DataSize64 += PostPadding; if(DataSize64 <= LineSize - MaxResamplerEdge) SrcBufferSize = static_cast(DataSize64); else { /* If the source size got saturated, we can't fill the desired * dst size. Figure out how many samples we can actually mix. */ SrcBufferSize = LineSize - MaxResamplerEdge; DataSize64 = SrcBufferSize - PostPadding; DataSize64 = ((DataSize64<(DataSize64) & ~3u; } ASSUME(DstBufferSize > 0); } } if((mFlags&(VoiceIsCallback|VoiceCallbackStopped)) == VoiceIsCallback && BufferListItem) { if(SrcBufferSize > mNumCallbackSamples) { const size_t byteOffset{mNumCallbackSamples*mFrameSize}; const size_t needBytes{SrcBufferSize*mFrameSize - byteOffset}; const int gotBytes{BufferListItem->mCallback(BufferListItem->mUserData, &BufferListItem->mSamples[byteOffset], static_cast(needBytes))}; if(gotBytes < 0) mFlags |= VoiceCallbackStopped; else if(static_cast(gotBytes) < needBytes) { mFlags |= VoiceCallbackStopped; mNumCallbackSamples += static_cast(static_cast(gotBytes) / mFrameSize); } else mNumCallbackSamples = SrcBufferSize; } } if UNLIKELY(!BufferListItem) { for(auto &chanbuffer : mVoiceSamples) { auto srciter = chanbuffer.data() + MaxResamplerEdge; auto srcend = chanbuffer.data() + MaxResamplerPadding; /* When loading from a voice that ended prematurely, only take * the samples that get closest to 0 amplitude. This helps * certain sounds fade out better. */ auto abs_lt = [](const float lhs, const float rhs) noexcept -> bool { return std::abs(lhs) < std::abs(rhs); }; srciter = std::min_element(srciter, srcend, abs_lt); SrcBufferSize = SrcBufferSize - PostPadding + MaxResamplerPadding; std::fill(srciter+1, chanbuffer.data() + SrcBufferSize, *srciter); } } else { if((mFlags&VoiceIsStatic)) LoadBufferStatic(BufferListItem, BufferLoopItem, DataPosInt, mFmtType, mFmtChannels, SrcBufferSize, mVoiceSamples); else if((mFlags&VoiceIsCallback)) LoadBufferCallback(BufferListItem, mNumCallbackSamples, mFmtType, mFmtChannels, SrcBufferSize, mVoiceSamples); else LoadBufferQueue(BufferListItem, BufferLoopItem, DataPosInt, mFmtType, mFmtChannels, SrcBufferSize, mVoiceSamples); if(mDecoder) { const size_t srcOffset{(increment*DstBufferSize + DataPosFrac)>>MixerFracBits}; SrcBufferSize = SrcBufferSize - PostPadding + MaxResamplerEdge; mDecoder->decode(mVoiceSamples, MaxResamplerEdge, SrcBufferSize, srcOffset); } } auto voiceSamples = mVoiceSamples.begin(); for(auto &chandata : mChans) { /* Resample, then apply ambisonic upsampling as needed. */ float *ResampledData{Resample(&mResampleState, voiceSamples->data() + MaxResamplerEdge, DataPosFrac, increment, {Device->ResampledData, DstBufferSize})}; if((mFlags&VoiceIsAmbisonic)) chandata.mAmbiSplitter.processHfScale({ResampledData, DstBufferSize}, chandata.mAmbiScale); /* Now filter and mix to the appropriate outputs. */ const al::span FilterBuf{Device->FilteredData}; { DirectParams &parms = chandata.mDryParams; const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(), {ResampledData, DstBufferSize}, mDirect.FilterType)}; if((mFlags&VoiceHasHrtf)) { const float TargetGain{UNLIKELY(vstate == Stopping) ? 0.0f : parms.Hrtf.Target.Gain}; DoHrtfMix(samples, DstBufferSize, parms, TargetGain, Counter, OutPos, Device); } else if((mFlags&VoiceHasNfc)) { const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data() : parms.Gains.Target.data()}; DoNfcMix({samples, DstBufferSize}, mDirect.Buffer.data(), parms, TargetGains, Counter, OutPos, Device); } else { const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data() : parms.Gains.Target.data()}; MixSamples({samples, DstBufferSize}, mDirect.Buffer, parms.Gains.Current.data(), TargetGains, Counter, OutPos); } } for(uint send{0};send < NumSends;++send) { if(mSend[send].Buffer.empty()) continue; SendParams &parms = chandata.mWetParams[send]; const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(), {ResampledData, DstBufferSize}, mSend[send].FilterType)}; const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data() : parms.Gains.Target.data()}; MixSamples({samples, DstBufferSize}, mSend[send].Buffer, parms.Gains.Current.data(), TargetGains, Counter, OutPos); } /* Store the last source samples used for next time. */ const size_t srcOffset{(increment*DstBufferSize + DataPosFrac)>>MixerFracBits}; std::copy_n(voiceSamples->data()+srcOffset, MaxResamplerPadding, voiceSamples->data()); ++voiceSamples; } /* Update positions */ DataPosFrac += increment*DstBufferSize; const uint SrcSamplesDone{DataPosFrac>>MixerFracBits}; DataPosInt += SrcSamplesDone; DataPosFrac &= MixerFracMask; OutPos += DstBufferSize; Counter = maxu(DstBufferSize, Counter) - DstBufferSize; if UNLIKELY(!BufferListItem) { /* Do nothing extra when there's no buffers. */ } else if((mFlags&VoiceIsStatic)) { if(BufferLoopItem) { /* Handle looping static source */ const uint LoopStart{BufferListItem->mLoopStart}; const uint LoopEnd{BufferListItem->mLoopEnd}; if(DataPosInt >= LoopEnd) { assert(LoopEnd > LoopStart); DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; } } else { /* Handle non-looping static source */ if(DataPosInt >= BufferListItem->mSampleLen) { BufferListItem = nullptr; break; } } } else if((mFlags&VoiceIsCallback)) { if(SrcSamplesDone < mNumCallbackSamples) { const size_t byteOffset{SrcSamplesDone*mFrameSize}; const size_t byteEnd{mNumCallbackSamples*mFrameSize}; al::byte *data{BufferListItem->mSamples}; std::copy(data+byteOffset, data+byteEnd, data); mNumCallbackSamples -= SrcSamplesDone; } else { BufferListItem = nullptr; mNumCallbackSamples = 0; } } else { /* Handle streaming source */ do { if(BufferListItem->mSampleLen > DataPosInt) break; DataPosInt -= BufferListItem->mSampleLen; ++buffers_done; BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed); if(!BufferListItem) BufferListItem = BufferLoopItem; } while(BufferListItem); } } while(OutPos < SamplesToDo); mFlags |= VoiceIsFading; /* Don't update positions and buffers if we were stopping. */ if UNLIKELY(vstate == Stopping) { mPlayState.store(Stopped, std::memory_order_release); return; } /* Capture the source ID in case it's reset for stopping. */ const uint SourceID{mSourceID.load(std::memory_order_relaxed)}; /* Update voice info */ mPosition.store(DataPosInt, std::memory_order_relaxed); mPositionFrac.store(DataPosFrac, std::memory_order_relaxed); mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed); if(!BufferListItem) { mLoopBuffer.store(nullptr, std::memory_order_relaxed); mSourceID.store(0u, std::memory_order_relaxed); } std::atomic_thread_fence(std::memory_order_release); /* Send any events now, after the position/buffer info was updated. */ const uint enabledevt{Context->mEnabledEvts.load(std::memory_order_acquire)}; if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted)) { RingBuffer *ring{Context->mAsyncEvents.get()}; auto evt_vec = ring->getWriteVector(); if(evt_vec.first.len > 0) { AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}}; evt->u.bufcomp.id = SourceID; evt->u.bufcomp.count = buffers_done; ring->writeAdvance(1); } } if(!BufferListItem) { /* If the voice just ended, set it to Stopping so the next render * ensures any residual noise fades to 0 amplitude. */ mPlayState.store(Stopping, std::memory_order_release); if((enabledevt&EventType_SourceStateChange)) SendSourceStoppedEvent(Context, SourceID); } } void Voice::prepare(ALCdevice *device) { if((mFmtChannels == FmtUHJ2 || mFmtChannels == FmtUHJ3 || mFmtChannels==FmtUHJ4) && !mDecoder) mDecoder = std::make_unique(); else if(mFmtChannels != FmtUHJ2 && mFmtChannels != FmtUHJ3 && mFmtChannels != FmtUHJ4) mDecoder = nullptr; /* Clear the stepping value explicitly so the mixer knows not to mix this * until the update gets applied. */ mStep = 0; /* Make sure the sample history is cleared. */ std::fill(mVoiceSamples.begin(), mVoiceSamples.end(), BufferLine{}); /* Don't need to set the VoiceIsAmbisonic flag if the device is not higher * order than the voice. No HF scaling is necessary to mix it. */ if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder) { const uint8_t *OrderFromChan{(mFmtChannels == FmtBFormat2D) ? AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()}; const auto scales = BFormatDec::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder); const BandSplitter splitter{device->mXOverFreq / static_cast(device->Frequency)}; for(auto &chandata : mChans) { chandata.mAmbiScale = scales[*(OrderFromChan++)]; chandata.mAmbiSplitter = splitter; chandata.mDryParams = DirectParams{}; std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{}); } mFlags |= VoiceIsAmbisonic; } else { for(auto &chandata : mChans) { chandata.mDryParams = DirectParams{}; std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{}); } mFlags &= ~VoiceIsAmbisonic; } if(device->AvgSpeakerDist > 0.0f) { const float w1{SpeedOfSoundMetersPerSec / (device->AvgSpeakerDist * static_cast(device->Frequency))}; for(auto &chandata : mChans) chandata.mDryParams.NFCtrlFilter.init(w1); } }