#include "config.h" #include "alcomplex.h" #include "math_defs.h" extern inline ALcomplex complex_add(ALcomplex a, ALcomplex b); extern inline ALcomplex complex_sub(ALcomplex a, ALcomplex b); extern inline ALcomplex complex_mult(ALcomplex a, ALcomplex b); void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign) { ALsizei i, j, k, mask, step, step2; ALcomplex temp, u, w; ALdouble arg; /* Bit-reversal permutation applied to a sequence of FFTSize items */ for(i = 1;i < FFTSize-1;i++) { for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1) { if((i&mask) != 0) j++; j <<= 1; } j >>= 1; if(i < j) { temp = FFTBuffer[i]; FFTBuffer[i] = FFTBuffer[j]; FFTBuffer[j] = temp; } } /* Iterative form of Danielson–Lanczos lemma */ for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1) { step2 = step >> 1; arg = M_PI / step2; w.Real = cos(arg); w.Imag = sin(arg) * Sign; u.Real = 1.0; u.Imag = 0.0; for(j = 0;j < step2;j++) { for(k = j;k < FFTSize;k+=step) { temp = complex_mult(FFTBuffer[k+step2], u); FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp); FFTBuffer[k] = complex_add(FFTBuffer[k], temp); } u = complex_mult(u, w); } } } /*Discrete Hilbert Transform (analytic signal form)*/ void hilbert(ALsizei size, ALcomplex *InOutBuffer ) { ALsizei k; const ALdouble inverse_size = 1.0/(ALfloat)size; for ( k = 0; k < size;k++ ) InOutBuffer[k].Imag = 0.0; complex_fft( InOutBuffer, size, 1.0 ); for( k = 0; k < size; k++ ) { if( k == 0 || k == size/2 ) { InOutBuffer[k].Real *= inverse_size; InOutBuffer[k].Imag *= inverse_size; } else if ( k >=1 && k < size/2 ) { InOutBuffer[k].Real *= 2.0*inverse_size; InOutBuffer[k].Imag *= 2.0*inverse_size; } else { InOutBuffer[k].Real = 0.0; InOutBuffer[k].Imag = 0.0; } } complex_fft( InOutBuffer, size,-1.0 ); }