#include "config.h" #include "alcomplex.h" #include #include #include #include #include #include #include "albit.h" #include "alnumbers.h" #include "alnumeric.h" #include "opthelpers.h" namespace { using ushort = unsigned short; using ushort2 = std::pair; constexpr size_t BitReverseCounter(size_t log2_size) noexcept { /* Some magic math that calculates the number of swaps needed for a * sequence of bit-reversed indices when index < reversed_index. */ return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u)); } template struct BitReverser { static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table."); ushort2 mData[BitReverseCounter(N)]{}; constexpr BitReverser() { const size_t fftsize{1u << N}; size_t ret_i{0}; /* Bit-reversal permutation applied to a sequence of fftsize items. */ for(size_t idx{1u};idx < fftsize-1;++idx) { size_t revidx{0u}, imask{idx}; for(size_t i{0};i < N;++i) { revidx = (revidx<<1) | (imask&1); imask >>= 1; } if(idx < revidx) { mData[ret_i].first = static_cast(idx); mData[ret_i].second = static_cast(revidx); ++ret_i; } } assert(ret_i == al::size(mData)); } }; /* These bit-reversal swap tables support up to 10-bit indices (1024 elements), * which is the largest used by OpenAL Soft's filters and effects. Larger FFT * requests, used by some utilities where performance is less important, will * use a slower table-less path. */ constexpr BitReverser<2> BitReverser2{}; constexpr BitReverser<3> BitReverser3{}; constexpr BitReverser<4> BitReverser4{}; constexpr BitReverser<5> BitReverser5{}; constexpr BitReverser<6> BitReverser6{}; constexpr BitReverser<7> BitReverser7{}; constexpr BitReverser<8> BitReverser8{}; constexpr BitReverser<9> BitReverser9{}; constexpr BitReverser<10> BitReverser10{}; constexpr std::array,11> gBitReverses{{ {}, {}, BitReverser2.mData, BitReverser3.mData, BitReverser4.mData, BitReverser5.mData, BitReverser6.mData, BitReverser7.mData, BitReverser8.mData, BitReverser9.mData, BitReverser10.mData }}; } // namespace template std::enable_if_t::value> complex_fft(const al::span> buffer, const al::type_identity_t sign) { const size_t fftsize{buffer.size()}; /* Get the number of bits used for indexing. Simplifies bit-reversal and * the main loop count. */ const size_t log2_size{static_cast(al::countr_zero(fftsize))}; if(log2_size >= gBitReverses.size()) UNLIKELY { for(size_t idx{1u};idx < fftsize-1;++idx) { size_t revidx{0u}, imask{idx}; for(size_t i{0};i < log2_size;++i) { revidx = (revidx<<1) | (imask&1); imask >>= 1; } if(idx < revidx) std::swap(buffer[idx], buffer[revidx]); } } else for(auto &rev : gBitReverses[log2_size]) std::swap(buffer[rev.first], buffer[rev.second]); /* Iterative form of Danielson-Lanczos lemma */ const Real pi{al::numbers::pi_v * sign}; size_t step2{1u}; for(size_t i{0};i < log2_size;++i) { const Real arg{pi / static_cast(step2)}; /* TODO: Would std::polar(1.0, arg) be any better? */ const std::complex w{std::cos(arg), std::sin(arg)}; std::complex u{1.0, 0.0}; const size_t step{step2 << 1}; for(size_t j{0};j < step2;j++) { for(size_t k{j};k < fftsize;k+=step) { std::complex temp{buffer[k+step2] * u}; buffer[k+step2] = buffer[k] - temp; buffer[k] += temp; } u *= w; } step2 <<= 1; } } void complex_hilbert(const al::span> buffer) { using namespace std::placeholders; inverse_fft(buffer); const double inverse_size = 1.0/static_cast(buffer.size()); auto bufiter = buffer.begin(); const auto halfiter = bufiter + (buffer.size()>>1); *bufiter *= inverse_size; ++bufiter; bufiter = std::transform(bufiter, halfiter, bufiter, [scale=inverse_size*2.0](std::complex d){ return d * scale; }); *bufiter *= inverse_size; ++bufiter; std::fill(bufiter, buffer.end(), std::complex{}); forward_fft(buffer); } template void complex_fft<>(const al::span> buffer, const float sign); template void complex_fft<>(const al::span> buffer, const double sign);