#ifndef AL_MALLOC_H #define AL_MALLOC_H #include #include #include #include void *al_malloc(size_t alignment, size_t size); void *al_calloc(size_t alignment, size_t size); void al_free(void *ptr) noexcept; #define DEF_NEWDEL(T) \ void *operator new(size_t size) \ { \ void *ret = al_malloc(alignof(T), size); \ if(!ret) throw std::bad_alloc(); \ return ret; \ } \ void operator delete(void *block) noexcept { al_free(block); } #define DEF_PLACE_NEWDEL() \ void *operator new(size_t /*size*/, void *ptr) noexcept { return ptr; } \ void operator delete(void *block) noexcept { al_free(block); } \ void operator delete(void* /*block*/, void* /*ptr*/) noexcept { } namespace al { #define REQUIRES(...) typename std::enable_if<(__VA_ARGS__),int>::type = 0 template struct allocator : public std::allocator { using size_type = size_t; using pointer = T*; using const_pointer = const T*; template struct rebind { using other = allocator; }; pointer allocate(size_type n, const void* = nullptr) { if(n > std::numeric_limits::max() / sizeof(T)) throw std::bad_alloc(); void *ret{al_malloc(alignment, n*sizeof(T))}; if(!ret) throw std::bad_alloc(); return static_cast(ret); } void deallocate(pointer p, size_type) { al_free(p); } allocator() : std::allocator() { } allocator(const allocator &a) : std::allocator(a) { } template allocator(const allocator &a) : std::allocator(a) { } }; template inline T* assume_aligned(T *ptr) noexcept { static_assert((alignment & (alignment-1)) == 0, "alignment must be a power of 2"); #ifdef __GNUC__ return static_cast(__builtin_assume_aligned(ptr, alignment)); #elif defined(_MSC_VER) auto ptrval = reinterpret_cast(ptr); if((ptrval&(alignment-1)) != 0) __assume(0); return reinterpret_cast(ptrval); #else return ptr; #endif } template inline void destroy_at(T *ptr) { ptr->~T(); } template inline void destroy(T first, const T end) { while(first != end) { al::destroy_at(std::addressof(*first)); ++first; } } template::value)> inline T destroy_n(T first, N count) { if(count != 0) { do { al::destroy_at(std::addressof(*first)); ++first; } while(--count); } return first; } template inline void uninitialized_default_construct(T first, const T last) { using ValueT = typename std::iterator_traits::value_type; T current{first}; try { while(current != last) { ::new (static_cast(std::addressof(*current))) ValueT; ++current; } } catch(...) { destroy(first, current); throw; } } template::value)> inline T uninitialized_default_construct_n(T first, N count) { using ValueT = typename std::iterator_traits::value_type; T current{first}; if(count != 0) { try { do { ::new (static_cast(std::addressof(*current))) ValueT; ++current; } while(--count); } catch(...) { destroy(first, current); throw; } } return current; } /* std::make_unique was added with C++14, so until we rely on that, make our * own version. */ template std::unique_ptr make_unique(ArgsT&&...args) { return std::unique_ptr{new T{std::forward(args)...}}; } /* A flexible array type. Used either standalone or at the end of a parent * struct, with placement new, to have a run-time-sized array that's embedded * with its size. */ template struct FlexArray { using element_type = T; using value_type = typename std::remove_cv::type; using index_type = size_t; using difference_type = ptrdiff_t; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; const index_type mSize; alignas(alignment) element_type mArray[0]; static constexpr index_type Sizeof(index_type count, index_type base=0u) noexcept { return base + std::max(offsetof(FlexArray, mArray) + sizeof(T)*count, sizeof(FlexArray)); } FlexArray(index_type size) : mSize{size} { uninitialized_default_construct_n(mArray, mSize); } ~FlexArray() { destroy_n(mArray, mSize); } FlexArray(const FlexArray&) = delete; FlexArray& operator=(const FlexArray&) = delete; index_type size() const noexcept { return mSize; } bool empty() const noexcept { return mSize == 0; } pointer data() noexcept { return mArray; } const_pointer data() const noexcept { return mArray; } reference operator[](index_type i) noexcept { return mArray[i]; } const_reference operator[](index_type i) const noexcept { return mArray[i]; } reference front() noexcept { return mArray[0]; } const_reference front() const noexcept { return mArray[0]; } reference back() noexcept { return mArray[mSize-1]; } const_reference back() const noexcept { return mArray[mSize-1]; } iterator begin() noexcept { return mArray; } const_iterator begin() const noexcept { return mArray; } const_iterator cbegin() const noexcept { return mArray; } iterator end() noexcept { return mArray + mSize; } const_iterator end() const noexcept { return mArray + mSize; } const_iterator cend() const noexcept { return mArray + mSize; } reverse_iterator rbegin() noexcept { return end(); } const_reverse_iterator rbegin() const noexcept { return end(); } const_reverse_iterator crbegin() const noexcept { return cend(); } reverse_iterator rend() noexcept { return begin(); } const_reverse_iterator rend() const noexcept { return begin(); } const_reverse_iterator crend() const noexcept { return cbegin(); } DEF_PLACE_NEWDEL() }; #undef REQUIRES } // namespace al #endif /* AL_MALLOC_H */