#ifndef PHASE_SHIFTER_H #define PHASE_SHIFTER_H #ifdef HAVE_SSE_INTRINSICS #include #elif defined(HAVE_NEON) #include #endif #include #include #include #include #include "alcomplex.h" #include "alspan.h" struct NoInit { }; /* Implements a wide-band +90 degree phase-shift. Note that this should be * given one sample less of a delay (FilterSize/2 - 1) compared to the direct * signal delay (FilterSize/2) to properly align. */ template struct PhaseShifterT { static_assert(FilterSize >= 16, "FilterSize needs to be at least 16"); static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two"); alignas(16) std::array mCoeffs{}; /* Some notes on this filter construction. * * A wide-band phase-shift filter needs a delay to maintain linearity. A * dirac impulse in the center of a time-domain buffer represents a filter * passing all frequencies through as-is with a pure delay. Converting that * to the frequency domain, adjusting the phase of each frequency bin by * +90 degrees, then converting back to the time domain, results in a FIR * filter that applies a +90 degree wide-band phase-shift. * * A particularly notable aspect of the time-domain filter response is that * every other coefficient is 0. This allows doubling the effective size of * the filter, by storing only the non-0 coefficients and double-stepping * over the input to apply it. * * Additionally, the resulting filter is independent of the sample rate. * The same filter can be applied regardless of the device's sample rate * and achieve the same effect. */ PhaseShifterT() { using complex_d = std::complex; constexpr size_t fft_size{FilterSize}; constexpr size_t half_size{fft_size / 2}; auto fftBuffer = std::vector(fft_size, complex_d{}); fftBuffer[half_size] = 1.0; forward_fft(al::span{fftBuffer}); fftBuffer[0] *= std::numeric_limits::epsilon(); for(size_t i{1};i < half_size;++i) fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()}; fftBuffer[half_size] *= std::numeric_limits::epsilon(); for(size_t i{half_size+1};i < fft_size;++i) fftBuffer[i] = std::conj(fftBuffer[fft_size - i]); inverse_fft(al::span{fftBuffer}); auto fftiter = fftBuffer.data() + fft_size - 1; for(float &coeff : mCoeffs) { coeff = static_cast(fftiter->real() / double{fft_size}); fftiter -= 2; } } PhaseShifterT(NoInit) { } void process(al::span dst, const float *RESTRICT src) const; private: #if defined(HAVE_NEON) static auto unpacklo(float32x4_t a, float32x4_t b) { float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))}; return vcombine_f32(result.val[0], result.val[1]); } static auto unpackhi(float32x4_t a, float32x4_t b) { float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))}; return vcombine_f32(result.val[0], result.val[1]); } static auto load4(float32_t a, float32_t b, float32_t c, float32_t d) { float32x4_t ret{vmovq_n_f32(a)}; ret = vsetq_lane_f32(b, ret, 1); ret = vsetq_lane_f32(c, ret, 2); ret = vsetq_lane_f32(d, ret, 3); return ret; } #endif }; template inline void PhaseShifterT::process(al::span dst, const float *RESTRICT src) const { #ifdef HAVE_SSE_INTRINSICS if(size_t todo{dst.size()>>1}) { auto *out = reinterpret_cast<__m64*>(dst.data()); do { __m128 r04{_mm_setzero_ps()}; __m128 r14{_mm_setzero_ps()}; for(size_t j{0};j < mCoeffs.size();j+=4) { const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; const __m128 s0{_mm_loadu_ps(&src[j*2])}; const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])}; __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))}; r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs)); s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1)); r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs)); } src += 2; __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))}; r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); _mm_storel_pi(out, r4); ++out; } while(--todo); } if((dst.size()&1)) { __m128 r4{_mm_setzero_ps()}; for(size_t j{0};j < mCoeffs.size();j+=4) { const __m128 coeffs{_mm_load_ps(&mCoeffs[j])}; const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); dst.back() = _mm_cvtss_f32(r4); } #elif defined(HAVE_NEON) size_t pos{0}; if(size_t todo{dst.size()>>1}) { do { float32x4_t r04{vdupq_n_f32(0.0f)}; float32x4_t r14{vdupq_n_f32(0.0f)}; for(size_t j{0};j < mCoeffs.size();j+=4) { const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; const float32x4_t s0{vld1q_f32(&src[j*2])}; const float32x4_t s1{vld1q_f32(&src[j*2 + 4])}; const float32x4x2_t values{vuzpq_f32(s0, s1)}; r04 = vmlaq_f32(r04, values.val[0], coeffs); r14 = vmlaq_f32(r14, values.val[1], coeffs); } src += 2; float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))}; float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))}; vst1_f32(&dst[pos], r2); pos += 2; } while(--todo); } if((dst.size()&1)) { float32x4_t r4{vdupq_n_f32(0.0f)}; for(size_t j{0};j < mCoeffs.size();j+=4) { const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])}; const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])}; r4 = vmlaq_f32(r4, s, coeffs); } r4 = vaddq_f32(r4, vrev64q_f32(r4)); dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); } #else for(float &output : dst) { float ret{0.0f}; for(size_t j{0};j < mCoeffs.size();++j) ret += src[j*2] * mCoeffs[j]; output = ret; ++src; } #endif } #endif /* PHASE_SHIFTER_H */