#include "config.h" #include "ambidefs.h" #include #include "alnumbers.h" #include "opthelpers.h" namespace { constexpr std::array Ambi3DDecoderHFScale10{{ 2.000000000e+00f, 1.154700538e+00f }}; constexpr std::array Ambi3DDecoderHFScale2O{{ 1.972026594e+00f, 1.527525232e+00f, 7.888106377e-01f }}; /* TODO: Set properly when making the third-order upsampler decoder. */ constexpr std::array Ambi3DDecoderHFScale3O{{ 1.000000000e+00f, 1.000000000e+00f, 1.000000000e+00f, 1.000000000e+00f }}; inline auto& GetDecoderHFScales(uint order) noexcept { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale10; } /* Copied from mixer.cpp. */ constexpr auto CalcAmbiCoeffs(const float y, const float z, const float x) { const float xx{x*x}, yy{y*y}, zz{z*z}, xy{x*y}, yz{y*z}, xz{x*z}; return std::array{{ /* Zeroth-order */ 1.0f, /* ACN 0 = 1 */ /* First-order */ al::numbers::sqrt3_v * y, /* ACN 1 = sqrt(3) * Y */ al::numbers::sqrt3_v * z, /* ACN 2 = sqrt(3) * Z */ al::numbers::sqrt3_v * x, /* ACN 3 = sqrt(3) * X */ /* Second-order */ 3.872983346e+00f * xy, /* ACN 4 = sqrt(15) * X * Y */ 3.872983346e+00f * yz, /* ACN 5 = sqrt(15) * Y * Z */ 1.118033989e+00f * (3.0f*zz - 1.0f), /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ 3.872983346e+00f * xz, /* ACN 7 = sqrt(15) * X * Z */ 1.936491673e+00f * (xx - yy), /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ 2.091650066e+00f * (y*(3.0f*xx - yy)), /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ 1.024695076e+01f * (z*xy), /* ACN 10 = sqrt(105) * Z * X * Y */ 1.620185175e+00f * (y*(5.0f*zz - 1.0f)), /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ 1.322875656e+00f * (z*(5.0f*zz - 3.0f)), /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ 1.620185175e+00f * (x*(5.0f*zz - 1.0f)), /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ 5.123475383e+00f * (z*(xx - yy)), /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ 2.091650066e+00f * (x*(xx - 3.0f*yy)), /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ /* Fourth-order */ /* ACN 16 = sqrt(35)*3/2 * X * Y * (X*X - Y*Y) */ /* ACN 17 = sqrt(35/2)*3/2 * (3*X*X - Y*Y) * Y * Z */ /* ACN 18 = sqrt(5)*3/2 * X * Y * (7*Z*Z - 1) */ /* ACN 19 = sqrt(5/2)*3/2 * Y * Z * (7*Z*Z - 3) */ /* ACN 20 = 3/8 * (35*Z*Z*Z*Z - 30*Z*Z + 3) */ /* ACN 21 = sqrt(5/2)*3/2 * X * Z * (7*Z*Z - 3) */ /* ACN 22 = sqrt(5)*3/4 * (X*X - Y*Y) * (7*Z*Z - 1) */ /* ACN 23 = sqrt(35/2)*3/2 * (X*X - 3*Y*Y) * X * Z */ /* ACN 24 = sqrt(35)*3/8 * (X*X*X*X - 6*X*X*Y*Y + Y*Y*Y*Y) */ }}; } constexpr std::array,8> FirstOrderDecoder{{ {{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, }}, {{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, }}, {{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, }}, {{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, }}, {{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, }}, {{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, }}, {{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, }}, {{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, }}, }}; constexpr std::array,8> FirstOrderEncoder{{ CalcAmbiCoeffs( 0.57735026919f, 0.57735026919f, 0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, 0.57735026919f, -0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, 0.57735026919f, 0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, 0.57735026919f, -0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, -0.57735026919f, 0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, -0.57735026919f, -0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, -0.57735026919f, 0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, -0.57735026919f, -0.57735026919f), }}; static_assert(FirstOrderDecoder.size() == FirstOrderEncoder.size(), "First-order mismatch"); /* This calculates a first-order "upsampler" matrix. It combines a first-order * decoder matrix with a max-order encoder matrix, creating a matrix that * behaves as if the B-Format input signal is first decoded to a speaker array * at first-order, then those speaker feeds are encoded to a higher-order * signal. While not perfect, this should accurately encode a lower-order * signal into a higher-order signal. */ auto CalcFirstOrderUp() { std::array,4> res{}; for(size_t i{0};i < FirstOrderDecoder[0].size();++i) { for(size_t j{0};j < FirstOrderEncoder[0].size();++j) { double sum{0.0}; for(size_t k{0};k < FirstOrderDecoder.size();++k) sum += double{FirstOrderDecoder[k][i]} * FirstOrderEncoder[k][j]; res[i][j] = static_cast(sum); } } return res; } constexpr std::array,14> SecondOrderDecoder{{ {{ 7.142857143e-02f, 0.000000000e+00f, 0.000000000e+00f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, 1.290994449e-01f, }}, {{ 7.142857143e-02f, 0.000000000e+00f, 0.000000000e+00f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, 1.290994449e-01f, }}, {{ 7.142857143e-02f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, -1.290994449e-01f, }}, {{ 7.142857143e-02f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -7.453559925e-02f, 0.000000000e+00f, -1.290994449e-01f, }}, {{ 7.142857143e-02f, 0.000000000e+00f, 1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 1.490711985e-01f, 0.000000000e+00f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, 0.000000000e+00f, -1.237179148e-01f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 1.490711985e-01f, 0.000000000e+00f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, 9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, -9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, 7.142857143e-02f, -9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, 9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, 9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, -9.682458366e-02f, -9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, 7.142857143e-02f, -9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, -9.682458366e-02f, 0.000000000e+00f, }}, {{ 7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, -7.142857143e-02f, 9.682458366e-02f, 9.682458366e-02f, 0.000000000e+00f, 9.682458366e-02f, 0.000000000e+00f, }}, }}; constexpr std::array,14> SecondOrderEncoder{{ CalcAmbiCoeffs( 0.00000000000f, 0.00000000000f, 1.00000000000f), CalcAmbiCoeffs( 0.00000000000f, 0.00000000000f, -1.00000000000f), CalcAmbiCoeffs( 1.00000000000f, 0.00000000000f, 0.00000000000f), CalcAmbiCoeffs(-1.00000000000f, 0.00000000000f, 0.00000000000f), CalcAmbiCoeffs( 0.00000000000f, 1.00000000000f, 0.00000000000f), CalcAmbiCoeffs( 0.00000000000f, -1.00000000000f, 0.00000000000f), CalcAmbiCoeffs( 0.57735026919f, 0.57735026919f, 0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, 0.57735026919f, -0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, 0.57735026919f, 0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, 0.57735026919f, -0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, -0.57735026919f, 0.57735026919f), CalcAmbiCoeffs( 0.57735026919f, -0.57735026919f, -0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, -0.57735026919f, 0.57735026919f), CalcAmbiCoeffs(-0.57735026919f, -0.57735026919f, -0.57735026919f), }}; static_assert(SecondOrderDecoder.size() == SecondOrderEncoder.size(), "Second-order mismatch"); /* This calculates a second-order "upsampler" matrix. Same as the first-order * matrix, just using a slightly more dense speaker array suitable for second- * order content. */ auto CalcSecondOrderUp() { std::array,9> res{}; for(size_t i{0};i < SecondOrderDecoder[0].size();++i) { for(size_t j{0};j < SecondOrderEncoder[0].size();++j) { double sum{0.0}; for(size_t k{0};k < SecondOrderDecoder.size();++k) sum += double{SecondOrderDecoder[k][i]} * SecondOrderEncoder[k][j]; res[i][j] = static_cast(sum); } } return res; } /* TODO: When fourth-order is properly supported, fill this out. */ auto CalcThirdOrderUp() { std::array,16> res{}; for(size_t i{0};i < res.size();++i) res[i][i] = 1.0f; return res; } } // namespace const auto AmbiScale::FirstOrderUp{CalcFirstOrderUp()}; const auto AmbiScale::SecondOrderUp{CalcSecondOrderUp()}; const auto AmbiScale::ThirdOrderUp{CalcThirdOrderUp()}; auto AmbiScale::GetHFOrderScales(const uint in_order, const uint out_order) noexcept -> std::array { if(unlikely(in_order >= out_order)) return {1.0f, 1.0f, 1.0f, 1.0f}; return GetDecoderHFScales(in_order); }