#include "bsinc_tables.h" #include #include #include #include #include #include #include #include #include "alnumbers.h" #include "alnumeric.h" #include "bsinc_defs.h" #include "resampler_limits.h" namespace { using uint = unsigned int; #if __cpp_lib_math_special_functions >= 201603L using std::cyl_bessel_i; #else /* The zero-order modified Bessel function of the first kind, used for the * Kaiser window. * * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) * = sum_{k=0}^inf ((x / 2)^k / k!)^2 * * This implementation only handles nu = 0, and isn't the most precise (it * starts with the largest value and accumulates successively smaller values, * compounding the rounding and precision error), but it's good enough. */ template U cyl_bessel_i(T nu, U x) { if(nu != T{0}) throw std::runtime_error{"cyl_bessel_i: nu != 0"}; /* Start at k=1 since k=0 is trivial. */ const double x2{x/2.0}; double term{1.0}; double sum{1.0}; int k{1}; /* Let the integration converge until the term of the sum is no longer * significant. */ double last_sum{}; do { const double y{x2 / k}; ++k; last_sum = sum; term *= y * y; sum += term; } while(sum != last_sum); return static_cast(sum); } #endif /* This is the normalized cardinal sine (sinc) function. * * sinc(x) = { 1, x = 0 * { sin(pi x) / (pi x), otherwise. */ constexpr double Sinc(const double x) { constexpr double epsilon{std::numeric_limits::epsilon()}; if(!(x > epsilon || x < -epsilon)) return 1.0; return std::sin(al::numbers::pi*x) / (al::numbers::pi*x); } /* Calculate a Kaiser window from the given beta value and a normalized k * [-1, 1]. * * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 * { 0, elsewhere. * * Where k can be calculated as: * * k = i / l, where -l <= i <= l. * * or: * * k = 2 i / M - 1, where 0 <= i <= M. */ constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta) { if(!(k >= -1.0 && k <= 1.0)) return 0.0; return cyl_bessel_i(0, beta * std::sqrt(1.0 - k*k)) / besseli_0_beta; } /* Calculates the (normalized frequency) transition width of the Kaiser window. * Rejection is in dB. */ constexpr double CalcKaiserWidth(const double rejection, const uint order) noexcept { if(rejection > 21.19) return (rejection - 7.95) / (2.285 * al::numbers::pi*2.0 * order); /* This enforces a minimum rejection of just above 21.18dB */ return 5.79 / (al::numbers::pi*2.0 * order); } /* Calculates the beta value of the Kaiser window. Rejection is in dB. */ constexpr double CalcKaiserBeta(const double rejection) { if(rejection > 50.0) return 0.1102 * (rejection-8.7); else if(rejection >= 21.0) return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0)); return 0.0; } struct BSincHeader { double width{}; double beta{}; double scaleBase{}; std::array a{}; uint total_size{}; constexpr BSincHeader(uint Rejection, uint Order) noexcept : width{CalcKaiserWidth(Rejection, Order)}, beta{CalcKaiserBeta(Rejection)} , scaleBase{width / 2.0} { uint num_points{Order+1}; for(uint si{0};si < BSincScaleCount;++si) { const double scale{lerpd(scaleBase, 1.0, (si+1) / double{BSincScaleCount})}; const uint a_{std::min(static_cast(num_points / 2.0 / scale), num_points)}; const uint m{2 * a_}; a[si] = a_; total_size += 4 * BSincPhaseCount * ((m+3) & ~3u); } } }; /* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop * at nyquist. Each filter will scale up the order when downsampling, to 23rd * and 47th order respectively. */ constexpr BSincHeader bsinc12_hdr{60, 11}; constexpr BSincHeader bsinc24_hdr{60, 23}; template struct BSincFilterArray { alignas(16) std::array mTable{}; BSincFilterArray() { constexpr uint BSincPointsMax{(hdr.a[0]*2 + 3) & ~3u}; static_assert(BSincPointsMax <= MaxResamplerPadding, "MaxResamplerPadding is too small"); using filter_type = std::array,BSincPhaseCount+1>; auto filterptr = std::make_unique>(); const auto filter = filterptr->begin(); const double besseli_0_beta{cyl_bessel_i(0, hdr.beta)}; /* Calculate the Kaiser-windowed Sinc filter coefficients for each * scale and phase index. */ for(uint si{0};si < BSincScaleCount;++si) { const uint m{hdr.a[si] * 2}; const size_t o{(BSincPointsMax-m) / 2}; const double scale{lerpd(hdr.scaleBase, 1.0, (si+1) / double{BSincScaleCount})}; const double cutoff{scale - (hdr.scaleBase * std::max(1.0, scale*2.0))}; const auto a = static_cast(hdr.a[si]); const double l{a - 1.0/BSincPhaseCount}; /* Do one extra phase index so that the phase delta has a proper * target for its last index. */ for(uint pi{0};pi <= BSincPhaseCount;++pi) { const double phase{std::floor(l) + (pi/double{BSincPhaseCount})}; for(uint i{0};i < m;++i) { const double x{i - phase}; filter[si][pi][o+i] = Kaiser(hdr.beta, x/l, besseli_0_beta) * cutoff * Sinc(cutoff*x); } } } size_t idx{0}; for(size_t si{0};si < BSincScaleCount;++si) { const size_t m{((hdr.a[si]*2) + 3) & ~3u}; const size_t o{(BSincPointsMax-m) / 2}; /* Write out each phase index's filter and phase delta for this * quality scale. */ for(size_t pi{0};pi < BSincPhaseCount;++pi) { for(size_t i{0};i < m;++i) mTable[idx++] = static_cast(filter[si][pi][o+i]); /* Linear interpolation between phases is simplified by pre- * calculating the delta (b - a) in: x = a + f (b - a) */ for(size_t i{0};i < m;++i) { const double phDelta{filter[si][pi+1][o+i] - filter[si][pi][o+i]}; mTable[idx++] = static_cast(phDelta); } } /* Calculate and write out each phase index's filter quality scale * deltas. The last scale index doesn't have any scale or scale- * phase deltas. */ if(si == BSincScaleCount-1) { for(size_t i{0};i < BSincPhaseCount*m*2;++i) mTable[idx++] = 0.0f; } else for(size_t pi{0};pi < BSincPhaseCount;++pi) { /* Linear interpolation between scales is also simplified. * * Given a difference in the number of points between scales, * the destination points will be 0, thus: x = a + f (-a) */ for(size_t i{0};i < m;++i) { const double scDelta{filter[si+1][pi][o+i] - filter[si][pi][o+i]}; mTable[idx++] = static_cast(scDelta); } /* This last simplification is done to complete the bilinear * equation for the combination of phase and scale. */ for(size_t i{0};i < m;++i) { const double spDelta{(filter[si+1][pi+1][o+i] - filter[si+1][pi][o+i]) - (filter[si][pi+1][o+i] - filter[si][pi][o+i])}; mTable[idx++] = static_cast(spDelta); } } } assert(idx == hdr.total_size); } [[nodiscard]] constexpr auto getHeader() const noexcept -> const BSincHeader& { return hdr; } [[nodiscard]] constexpr auto getTable() const noexcept -> const float* { return mTable.data(); } }; const BSincFilterArray bsinc12_filter{}; const BSincFilterArray bsinc24_filter{}; template constexpr BSincTable GenerateBSincTable(const T &filter) { BSincTable ret{}; const BSincHeader &hdr = filter.getHeader(); ret.scaleBase = static_cast(hdr.scaleBase); ret.scaleRange = static_cast(1.0 / (1.0 - hdr.scaleBase)); for(size_t i{0};i < BSincScaleCount;++i) ret.m[i] = ((hdr.a[i]*2) + 3) & ~3u; ret.filterOffset[0] = 0; for(size_t i{1};i < BSincScaleCount;++i) ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1]*4*BSincPhaseCount; ret.Tab = filter.getTable(); return ret; } } // namespace const BSincTable gBSinc12{GenerateBSincTable(bsinc12_filter)}; const BSincTable gBSinc24{GenerateBSincTable(bsinc24_filter)};