#include "config.h" #include "converter.h" #include #include #include #include #include #include #include #include "albit.h" #include "alnumeric.h" #include "fpu_ctrl.h" namespace { constexpr uint MaxPitch{10}; static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!"); static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize, "MaxPitch and/or BufferLineSize are too large for MixerFracBits!"); template constexpr float LoadSample(DevFmtType_t val) noexcept = delete; template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return float(val) * (1.0f/128.0f); } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return float(val) * (1.0f/32768.0f); } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return static_cast(val) * (1.0f/2147483648.0f); } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return val; } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return LoadSample(static_cast(val - 128)); } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return LoadSample(static_cast(val - 32768)); } template<> constexpr float LoadSample(DevFmtType_t val) noexcept { return LoadSample(static_cast(val - 2147483648u)); } template inline void LoadSampleArray(float *RESTRICT dst, const void *src, const size_t srcstep, const size_t samples) noexcept { auto *ssrc = static_cast*>(src); for(size_t i{0u};i < samples;i++) dst[i] = LoadSample(ssrc[i*srcstep]); } void LoadSamples(float *dst, const void *src, const size_t srcstep, const DevFmtType srctype, const size_t samples) noexcept { #define HANDLE_FMT(T) \ case T: LoadSampleArray(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(DevFmtByte); HANDLE_FMT(DevFmtUByte); HANDLE_FMT(DevFmtShort); HANDLE_FMT(DevFmtUShort); HANDLE_FMT(DevFmtInt); HANDLE_FMT(DevFmtUInt); HANDLE_FMT(DevFmtFloat); } #undef HANDLE_FMT } template inline DevFmtType_t StoreSample(float) noexcept; template<> inline float StoreSample(float val) noexcept { return val; } template<> inline int32_t StoreSample(float val) noexcept { return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f)); } template<> inline int16_t StoreSample(float val) noexcept { return static_cast(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); } template<> inline int8_t StoreSample(float val) noexcept { return static_cast(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); } /* Define unsigned output variations. */ template<> inline uint32_t StoreSample(float val) noexcept { return static_cast(StoreSample(val)) + 2147483648u; } template<> inline uint16_t StoreSample(float val) noexcept { return static_cast(StoreSample(val) + 32768); } template<> inline uint8_t StoreSample(float val) noexcept { return static_cast(StoreSample(val) + 128); } template inline void StoreSampleArray(void *dst, const float *RESTRICT src, const size_t dststep, const size_t samples) noexcept { auto *sdst = static_cast*>(dst); for(size_t i{0u};i < samples;i++) sdst[i*dststep] = StoreSample(src[i]); } void StoreSamples(void *dst, const float *src, const size_t dststep, const DevFmtType dsttype, const size_t samples) noexcept { #define HANDLE_FMT(T) \ case T: StoreSampleArray(dst, src, dststep, samples); break switch(dsttype) { HANDLE_FMT(DevFmtByte); HANDLE_FMT(DevFmtUByte); HANDLE_FMT(DevFmtShort); HANDLE_FMT(DevFmtUShort); HANDLE_FMT(DevFmtInt); HANDLE_FMT(DevFmtUInt); HANDLE_FMT(DevFmtFloat); } #undef HANDLE_FMT } template void Mono2Stereo(float *RESTRICT dst, const void *src, const size_t frames) noexcept { auto *ssrc = static_cast*>(src); for(size_t i{0u};i < frames;i++) dst[i*2 + 1] = dst[i*2 + 0] = LoadSample(ssrc[i]) * 0.707106781187f; } template void Multi2Mono(uint chanmask, const size_t step, const float scale, float *RESTRICT dst, const void *src, const size_t frames) noexcept { auto *ssrc = static_cast*>(src); std::fill_n(dst, frames, 0.0f); for(size_t c{0};chanmask;++c) { if((chanmask&1)) LIKELY { for(size_t i{0u};i < frames;i++) dst[i] += LoadSample(ssrc[i*step + c]); } chanmask >>= 1; } for(size_t i{0u};i < frames;i++) dst[i] *= scale; } } // namespace SampleConverterPtr SampleConverter::Create(DevFmtType srcType, DevFmtType dstType, size_t numchans, uint srcRate, uint dstRate, Resampler resampler) { if(numchans < 1 || srcRate < 1 || dstRate < 1) return nullptr; SampleConverterPtr converter{new(FamCount(numchans)) SampleConverter{numchans}}; converter->mSrcType = srcType; converter->mDstType = dstType; converter->mSrcTypeSize = BytesFromDevFmt(srcType); converter->mDstTypeSize = BytesFromDevFmt(dstType); converter->mSrcPrepCount = MaxResamplerPadding; converter->mFracOffset = 0; for(auto &chan : converter->mChan) { const al::span buffer{chan.PrevSamples}; std::fill(buffer.begin(), buffer.end(), 0.0f); } /* Have to set the mixer FPU mode since that's what the resampler code expects. */ FPUCtl mixer_mode{}; auto step = static_cast( mind(srcRate*double{MixerFracOne}/dstRate + 0.5, MaxPitch*MixerFracOne)); converter->mIncrement = maxu(step, 1); if(converter->mIncrement == MixerFracOne) converter->mResample = [](const InterpState*, const float *RESTRICT src, uint, const uint, const al::span dst) { std::copy_n(src, dst.size(), dst.begin()); }; else converter->mResample = PrepareResampler(resampler, converter->mIncrement, &converter->mState); return converter; } uint SampleConverter::availableOut(uint srcframes) const { if(srcframes < 1) { /* No output samples if there's no input samples. */ return 0; } const uint prepcount{mSrcPrepCount}; if(prepcount < MaxResamplerPadding && MaxResamplerPadding - prepcount >= srcframes) { /* Not enough input samples to generate an output sample. */ return 0; } uint64_t DataSize64{prepcount}; DataSize64 += srcframes; DataSize64 -= MaxResamplerPadding; DataSize64 <<= MixerFracBits; DataSize64 -= mFracOffset; /* If we have a full prep, we can generate at least one sample. */ return static_cast(clampu64((DataSize64 + mIncrement-1)/mIncrement, 1, std::numeric_limits::max())); } uint SampleConverter::convert(const void **src, uint *srcframes, void *dst, uint dstframes) { const uint SrcFrameSize{static_cast(mChan.size()) * mSrcTypeSize}; const uint DstFrameSize{static_cast(mChan.size()) * mDstTypeSize}; const uint increment{mIncrement}; auto SamplesIn = static_cast(*src); uint NumSrcSamples{*srcframes}; FPUCtl mixer_mode{}; uint pos{0}; while(pos < dstframes && NumSrcSamples > 0) { const uint prepcount{mSrcPrepCount}; const uint readable{minu(NumSrcSamples, BufferLineSize - prepcount)}; if(prepcount < MaxResamplerPadding && MaxResamplerPadding-prepcount >= readable) { /* Not enough input samples to generate an output sample. Store * what we're given for later. */ for(size_t chan{0u};chan < mChan.size();chan++) LoadSamples(&mChan[chan].PrevSamples[prepcount], SamplesIn + mSrcTypeSize*chan, mChan.size(), mSrcType, readable); mSrcPrepCount = prepcount + readable; NumSrcSamples = 0; break; } float *RESTRICT SrcData{mSrcSamples.data()}; float *RESTRICT DstData{mDstSamples.data()}; uint DataPosFrac{mFracOffset}; uint64_t DataSize64{prepcount}; DataSize64 += readable; DataSize64 -= MaxResamplerPadding; DataSize64 <<= MixerFracBits; DataSize64 -= DataPosFrac; /* If we have a full prep, we can generate at least one sample. */ auto DstSize = static_cast( clampu64((DataSize64 + increment-1)/increment, 1, BufferLineSize)); DstSize = minu(DstSize, dstframes-pos); const uint DataPosEnd{DstSize*increment + DataPosFrac}; const uint SrcDataEnd{DataPosEnd>>MixerFracBits}; assert(prepcount+readable >= SrcDataEnd); const uint nextprep{minu(prepcount + readable - SrcDataEnd, MaxResamplerPadding)}; for(size_t chan{0u};chan < mChan.size();chan++) { const std::byte *SrcSamples{SamplesIn + mSrcTypeSize*chan}; std::byte *DstSamples = static_cast(dst) + mDstTypeSize*chan; /* Load the previous samples into the source data first, then the * new samples from the input buffer. */ std::copy_n(mChan[chan].PrevSamples.cbegin(), prepcount, SrcData); LoadSamples(SrcData + prepcount, SrcSamples, mChan.size(), mSrcType, readable); /* Store as many prep samples for next time as possible, given the * number of output samples being generated. */ std::copy_n(SrcData+SrcDataEnd, nextprep, mChan[chan].PrevSamples.begin()); std::fill(std::begin(mChan[chan].PrevSamples)+nextprep, std::end(mChan[chan].PrevSamples), 0.0f); /* Now resample, and store the result in the output buffer. */ mResample(&mState, SrcData+MaxResamplerEdge, DataPosFrac, increment, {DstData, DstSize}); StoreSamples(DstSamples, DstData, mChan.size(), mDstType, DstSize); } /* Update the number of prep samples still available, as well as the * fractional offset. */ mSrcPrepCount = nextprep; mFracOffset = DataPosEnd & MixerFracMask; /* Update the src and dst pointers in case there's still more to do. */ const uint srcread{minu(NumSrcSamples, SrcDataEnd + mSrcPrepCount - prepcount)}; SamplesIn += SrcFrameSize*srcread; NumSrcSamples -= srcread; dst = static_cast(dst) + DstFrameSize*DstSize; pos += DstSize; } *src = SamplesIn; *srcframes = NumSrcSamples; return pos; } uint SampleConverter::convertPlanar(const void **src, uint *srcframes, void *const*dst, uint dstframes) { const uint increment{mIncrement}; uint NumSrcSamples{*srcframes}; FPUCtl mixer_mode{}; uint pos{0}; while(pos < dstframes && NumSrcSamples > 0) { const uint prepcount{mSrcPrepCount}; const uint readable{minu(NumSrcSamples, BufferLineSize - prepcount)}; if(prepcount < MaxResamplerPadding && MaxResamplerPadding-prepcount >= readable) { /* Not enough input samples to generate an output sample. Store * what we're given for later. */ for(size_t chan{0u};chan < mChan.size();chan++) { LoadSamples(&mChan[chan].PrevSamples[prepcount], static_cast(src[chan]), 1, mSrcType, readable); src[chan] = static_cast(src[chan]) + mSrcTypeSize*readable; } mSrcPrepCount = prepcount + readable; NumSrcSamples = 0; break; } float *RESTRICT SrcData{mSrcSamples.data()}; float *RESTRICT DstData{mDstSamples.data()}; uint DataPosFrac{mFracOffset}; uint64_t DataSize64{prepcount}; DataSize64 += readable; DataSize64 -= MaxResamplerPadding; DataSize64 <<= MixerFracBits; DataSize64 -= DataPosFrac; /* If we have a full prep, we can generate at least one sample. */ auto DstSize = static_cast( clampu64((DataSize64 + increment-1)/increment, 1, BufferLineSize)); DstSize = minu(DstSize, dstframes-pos); const uint DataPosEnd{DstSize*increment + DataPosFrac}; const uint SrcDataEnd{DataPosEnd>>MixerFracBits}; assert(prepcount+readable >= SrcDataEnd); const uint nextprep{minu(prepcount + readable - SrcDataEnd, MaxResamplerPadding)}; for(size_t chan{0u};chan < mChan.size();chan++) { /* Load the previous samples into the source data first, then the * new samples from the input buffer. */ std::copy_n(mChan[chan].PrevSamples.cbegin(), prepcount, SrcData); LoadSamples(SrcData + prepcount, src[chan], 1, mSrcType, readable); /* Store as many prep samples for next time as possible, given the * number of output samples being generated. */ std::copy_n(SrcData+SrcDataEnd, nextprep, mChan[chan].PrevSamples.begin()); std::fill(std::begin(mChan[chan].PrevSamples)+nextprep, std::end(mChan[chan].PrevSamples), 0.0f); /* Now resample, and store the result in the output buffer. */ mResample(&mState, SrcData+MaxResamplerEdge, DataPosFrac, increment, {DstData, DstSize}); std::byte *DstSamples = static_cast(dst[chan]) + pos*mDstTypeSize; StoreSamples(DstSamples, DstData, 1, mDstType, DstSize); } /* Update the number of prep samples still available, as well as the * fractional offset. */ mSrcPrepCount = nextprep; mFracOffset = DataPosEnd & MixerFracMask; /* Update the src and dst pointers in case there's still more to do. */ const uint srcread{minu(NumSrcSamples, SrcDataEnd + mSrcPrepCount - prepcount)}; for(size_t chan{0u};chan < mChan.size();chan++) src[chan] = static_cast(src[chan]) + mSrcTypeSize*srcread; NumSrcSamples -= srcread; pos += DstSize; } *srcframes = NumSrcSamples; return pos; } void ChannelConverter::convert(const void *src, float *dst, uint frames) const { if(mDstChans == DevFmtMono) { const float scale{std::sqrt(1.0f / static_cast(al::popcount(mChanMask)))}; switch(mSrcType) { #define HANDLE_FMT(T) case T: Multi2Mono(mChanMask, mSrcStep, scale, dst, src, frames); break HANDLE_FMT(DevFmtByte); HANDLE_FMT(DevFmtUByte); HANDLE_FMT(DevFmtShort); HANDLE_FMT(DevFmtUShort); HANDLE_FMT(DevFmtInt); HANDLE_FMT(DevFmtUInt); HANDLE_FMT(DevFmtFloat); #undef HANDLE_FMT } } else if(mChanMask == 0x1 && mDstChans == DevFmtStereo) { switch(mSrcType) { #define HANDLE_FMT(T) case T: Mono2Stereo(dst, src, frames); break HANDLE_FMT(DevFmtByte); HANDLE_FMT(DevFmtUByte); HANDLE_FMT(DevFmtShort); HANDLE_FMT(DevFmtUShort); HANDLE_FMT(DevFmtInt); HANDLE_FMT(DevFmtUInt); HANDLE_FMT(DevFmtFloat); #undef HANDLE_FMT } } }