#ifndef CORE_MIXER_HRTFBASE_H #define CORE_MIXER_HRTFBASE_H #include #include #include "almalloc.h" #include "hrtfdefs.h" #include "opthelpers.h" using uint = unsigned int; using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const size_t irSize, const ConstHrirSpan Coeffs, const float left, const float right); template inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { ASSUME(BufferSize > 0); const ConstHrirSpan Coeffs{hrtfparams->Coeffs}; const float gainstep{hrtfparams->GainStep}; const float gain{hrtfparams->Gain}; size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]}; size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]}; float stepcount{0.0f}; for(size_t i{0u};i < BufferSize;++i) { const float g{gain + gainstep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right); stepcount += 1.0f; } } template inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { ASSUME(BufferSize > 0); const ConstHrirSpan OldCoeffs{oldparams->Coeffs}; const float oldGainStep{oldparams->Gain / static_cast(BufferSize)}; const ConstHrirSpan NewCoeffs{newparams->Coeffs}; const float newGainStep{newparams->GainStep}; if(oldparams->Gain > GainSilenceThreshold) [[likely]] { size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]}; size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]}; auto stepcount = static_cast(BufferSize); for(size_t i{0u};i < BufferSize;++i) { const float g{oldGainStep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right); stepcount -= 1.0f; } } if(newGainStep*static_cast(BufferSize) > GainSilenceThreshold) [[likely]] { size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]}; size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]}; float stepcount{1.0f}; for(size_t i{1u};i < BufferSize;++i) { const float g{newGainStep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right); stepcount += 1.0f; } } } template inline void MixDirectHrtfBase(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const al::span InSamples, float2 *RESTRICT AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) { ASSUME(BufferSize > 0); for(const FloatBufferLine &input : InSamples) { /* For dual-band processing, the signal needs extra scaling applied to * the high frequency response. The band-splitter applies this scaling * with a consistent phase shift regardless of the scale amount. */ ChanState->mSplitter.processHfScale({input.data(), BufferSize}, TempBuf, ChanState->mHfScale); /* Now apply the HRIR coefficients to this channel. */ const float *RESTRICT tempbuf{al::assume_aligned<16>(TempBuf)}; const ConstHrirSpan Coeffs{ChanState->mCoeffs}; for(size_t i{0u};i < BufferSize;++i) { const float insample{tempbuf[i]}; ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample); } ++ChanState; } /* Add the HRTF signal to the existing "direct" signal. */ float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())}; float *RESTRICT right{al::assume_aligned<16>(RightOut.data())}; for(size_t i{0u};i < BufferSize;++i) left[i] += AccumSamples[i][0]; for(size_t i{0u};i < BufferSize;++i) right[i] += AccumSamples[i][1]; /* Copy the new in-progress accumulation values to the front and clear the * following samples for the next mix. */ auto accum_iter = std::copy_n(AccumSamples+BufferSize, HrirLength, AccumSamples); std::fill_n(accum_iter, BufferSize, float2{}); } #endif /* CORE_MIXER_HRTFBASE_H */