#ifndef CORE_MIXER_HRTFBASE_H #define CORE_MIXER_HRTFBASE_H #include #include #include "almalloc.h" #include "hrtfdefs.h" #include "opthelpers.h" using uint = unsigned int; using ApplyCoeffsT = void(&)(float2 *RESTRICT Values, const size_t irSize, const HrirArray &Coeffs, const float left, const float right); template inline void MixHrtfBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { ASSUME(BufferSize > 0); const HrirArray &Coeffs = *hrtfparams->Coeffs; const float gainstep{hrtfparams->GainStep}; const float gain{hrtfparams->Gain}; size_t ldelay{HrtfHistoryLength - hrtfparams->Delay[0]}; size_t rdelay{HrtfHistoryLength - hrtfparams->Delay[1]}; float stepcount{0.0f}; for(size_t i{0u};i < BufferSize;++i) { const float g{gain + gainstep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, left, right); stepcount += 1.0f; } } template inline void MixHrtfBlendBase(const float *InSamples, float2 *RESTRICT AccumSamples, const size_t IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { ASSUME(BufferSize > 0); const auto &OldCoeffs = oldparams->Coeffs; const float oldGainStep{oldparams->Gain / static_cast(BufferSize)}; const auto &NewCoeffs = *newparams->Coeffs; const float newGainStep{newparams->GainStep}; if LIKELY(oldparams->Gain > GainSilenceThreshold) { size_t ldelay{HrtfHistoryLength - oldparams->Delay[0]}; size_t rdelay{HrtfHistoryLength - oldparams->Delay[1]}; auto stepcount = static_cast(BufferSize); for(size_t i{0u};i < BufferSize;++i) { const float g{oldGainStep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, OldCoeffs, left, right); stepcount -= 1.0f; } } if LIKELY(newGainStep*static_cast(BufferSize) > GainSilenceThreshold) { size_t ldelay{HrtfHistoryLength+1 - newparams->Delay[0]}; size_t rdelay{HrtfHistoryLength+1 - newparams->Delay[1]}; float stepcount{1.0f}; for(size_t i{1u};i < BufferSize;++i) { const float g{newGainStep*stepcount}; const float left{InSamples[ldelay++] * g}; const float right{InSamples[rdelay++] * g}; ApplyCoeffs(AccumSamples+i, IrSize, NewCoeffs, left, right); stepcount += 1.0f; } } } template inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span InSamples, float2 *RESTRICT AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) { ASSUME(BufferSize > 0); /* Add the existing signal directly to the accumulation buffer, unfiltered, * and with a delay to align with the input delay. */ for(size_t i{0};i < BufferSize;++i) { AccumSamples[HrtfDirectDelay+i][0] += LeftOut[i]; AccumSamples[HrtfDirectDelay+i][1] += RightOut[i]; } for(const FloatBufferLine &input : InSamples) { /* For dual-band processing, the signal needs extra scaling applied to * the high frequency response. The band-splitter alone creates a * frequency-dependent phase shift, which is not ideal. To counteract * it, combine it with a backwards phase shift. */ /* Load the input signal backwards, into a temp buffer with delay * padding. The delay serves to reduce the error caused by the IIR * filter's phase shift on a partial input. */ al::span tempbuf{al::assume_aligned<16>(TempBuf), HrtfDirectDelay+BufferSize}; auto tmpiter = std::reverse_copy(input.begin(), input.begin()+BufferSize, tempbuf.begin()); std::copy(ChanState->mDelay.cbegin(), ChanState->mDelay.cend(), tmpiter); /* Save the unfiltered newest input samples for next time. */ std::copy_n(tempbuf.begin(), ChanState->mDelay.size(), ChanState->mDelay.begin()); /* Apply the all-pass on the reversed signal and reverse the resulting * sample array. This produces the forward response with a backwards * phase shift (+n degrees becomes -n degrees). */ ChanState->mSplitter.applyAllpass(tempbuf); tempbuf = tempbuf.subspan(); std::reverse(tempbuf.begin(), tempbuf.end()); /* Now apply the HF scale with the band-splitter. This applies the * forward phase shift, which cancels out with the backwards phase * shift to get the original phase on the scaled signal. */ ChanState->mSplitter.processHfScale(tempbuf, ChanState->mHfScale); /* Now apply the HRIR coefficients to this channel. */ const auto &Coeffs = ChanState->mCoeffs; for(size_t i{0u};i < BufferSize;++i) { const float insample{tempbuf[i]}; ApplyCoeffs(AccumSamples+i, IrSize, Coeffs, insample, insample); } ++ChanState; } for(size_t i{0u};i < BufferSize;++i) LeftOut[i] = AccumSamples[i][0]; for(size_t i{0u};i < BufferSize;++i) RightOut[i] = AccumSamples[i][1]; /* Copy the new in-progress accumulation values to the front and clear the * following samples for the next mix. */ auto accum_iter = std::copy_n(AccumSamples+BufferSize, HrirLength+HrtfDirectDelay, AccumSamples); std::fill_n(accum_iter, BufferSize, float2{}); } #endif /* CORE_MIXER_HRTFBASE_H */