#include "config.h" #include #include #include #include "alnumeric.h" #include "core/bsinc_tables.h" #include "defs.h" #include "hrtfbase.h" struct CTag; struct CopyTag; struct PointTag; struct LerpTag; struct CubicTag; struct BSincTag; struct FastBSincTag; namespace { constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits}; constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff}; inline float do_point(const InterpState&, const float *RESTRICT vals, const uint) { return vals[0]; } inline float do_lerp(const InterpState&, const float *RESTRICT vals, const uint frac) { return lerp(vals[0], vals[1], static_cast(frac)*(1.0f/MixerFracOne)); } inline float do_cubic(const InterpState&, const float *RESTRICT vals, const uint frac) { return cubic(vals[0], vals[1], vals[2], vals[3], static_cast(frac)*(1.0f/MixerFracOne)); } inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) { const size_t m{istate.bsinc.m}; ASSUME(m > 0); // Calculate the phase index and factor. const uint pi{frac >> FracPhaseBitDiff}; const float pf{static_cast(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; const float *RESTRICT fil{istate.bsinc.filter + m*pi*2}; const float *RESTRICT phd{fil + m}; const float *RESTRICT scd{fil + BSincPhaseCount*2*m}; const float *RESTRICT spd{scd + m}; // Apply the scale and phase interpolated filter. float r{0.0f}; for(size_t j_f{0};j_f < m;j_f++) r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; return r; } inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const uint frac) { const size_t m{istate.bsinc.m}; ASSUME(m > 0); // Calculate the phase index and factor. const uint pi{frac >> FracPhaseBitDiff}; const float pf{static_cast(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)}; const float *RESTRICT fil{istate.bsinc.filter + m*pi*2}; const float *RESTRICT phd{fil + m}; // Apply the phase interpolated filter. float r{0.0f}; for(size_t j_f{0};j_f < m;j_f++) r += (fil[j_f] + pf*phd[j_f]) * vals[j_f]; return r; } using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const uint); template float *DoResample(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const InterpState istate{*state}; for(float &out : dst) { out = Sampler(istate, src, frac); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs, const float left, const float right) { ASSUME(IrSize >= MinIrLength); for(size_t c{0};c < IrSize;++c) { Values[c][0] += Coeffs[c][0] * left; Values[c][1] += Coeffs[c][1] * right; } } } // namespace template<> float *Resample_(const InterpState*, float *RESTRICT src, uint, uint, const al::span dst) { #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((reinterpret_cast(src)&15) == (reinterpret_cast(dst.data())&15)) return src; #endif std::copy_n(src, dst.size(), dst.begin()); return dst.data(); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { return DoResample(state, src, frac, increment, dst); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { return DoResample(state, src, frac, increment, dst); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { return DoResample(state, src-1, frac, increment, dst); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { return DoResample(state, src-state->bsinc.l, frac, increment, dst); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { return DoResample(state, src-state->bsinc.l, frac, increment, dst); } template<> void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { MixHrtfBase(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { MixHrtfBlendBase(InSamples, AccumSamples, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const al::span InSamples, float2 *AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, IrSize, BufferSize); } template<> void Mix_(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const auto min_len = minz(Counter, InSamples.size()); for(FloatBufferLine &output : OutBuffer) { float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; float gain{*CurrentGains}; const float step{(*TargetGains-gain) * delta}; size_t pos{0}; if(!(std::abs(step) > std::numeric_limits::epsilon())) gain = *TargetGains; else { float step_count{0.0f}; for(;pos != min_len;++pos) { dst[pos] += InSamples[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = *TargetGains; else gain += step*step_count; } *CurrentGains = gain; ++CurrentGains; ++TargetGains; if(!(std::abs(gain) > GainSilenceThreshold)) continue; for(;pos != InSamples.size();++pos) dst[pos] += InSamples[pos] * gain; } }