#include "config.h" #include #include #include #include "alnumeric.h" #include "core/bsinc_defs.h" #include "core/cubic_defs.h" #include "defs.h" #include "hrtfbase.h" struct SSETag; struct CubicTag; struct BSincTag; struct FastBSincTag; #if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__) #pragma GCC target("sse") #endif namespace { constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits}; constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits}; constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u}; constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits}; constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits}; constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u}; #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs, const float left, const float right) { const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; ASSUME(IrSize >= MinIrLength); /* This isn't technically correct to test alignment, but it's true for * systems that support SSE, which is the only one that needs to know the * alignment of Values (which alternates between 8- and 16-byte aligned). */ if(!(reinterpret_cast(Values)&15)) { for(size_t i{0};i < IrSize;i += 2) { const __m128 coeffs{_mm_load_ps(Coeffs[i].data())}; __m128 vals{_mm_load_ps(Values[i].data())}; vals = MLA4(vals, lrlr, coeffs); _mm_store_ps(Values[i].data(), vals); } } else { __m128 imp0, imp1; __m128 coeffs{_mm_load_ps(Coeffs[0].data())}; __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(Values[0].data()))}; imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(Values[0].data()), vals); size_t td{((IrSize+1)>>1) - 1}; size_t i{1}; do { coeffs = _mm_load_ps(Coeffs[i+1].data()); vals = _mm_load_ps(Values[i].data()); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(Values[i].data(), vals); imp0 = imp1; i += 2; } while(--td); vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(Values[i].data())); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi(reinterpret_cast<__m64*>(Values[i].data()), vals); } } force_inline void MixLine(const al::span InSamples, float *RESTRICT dst, float &CurrentGain, const float TargetGain, const float delta, const size_t min_len, const size_t aligned_len, size_t Counter) { float gain{CurrentGain}; const float step{(TargetGain-gain) * delta}; size_t pos{0}; if(!(std::abs(step) > std::numeric_limits::epsilon())) gain = TargetGain; else { float step_count{0.0f}; /* Mix with applying gain steps in aligned multiples of 4. */ if(size_t todo{min_len >> 2}) { const __m128 four4{_mm_set1_ps(4.0f)}; const __m128 step4{_mm_set1_ps(step)}; const __m128 gain4{_mm_set1_ps(gain)}; __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; do { const __m128 val4{_mm_load_ps(&InSamples[pos])}; __m128 dry4{_mm_load_ps(&dst[pos])}; /* dry += val * (gain + step*step_count) */ dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); _mm_store_ps(&dst[pos], dry4); step_count4 = _mm_add_ps(step_count4, four4); pos += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after the * last four mixed samples, so the lowest element represents the * next step count to apply. */ step_count = _mm_cvtss_f32(step_count4); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(size_t leftover{min_len&3};leftover;++pos,--leftover) { dst[pos] += InSamples[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGain; else gain += step*step_count; /* Mix until pos is aligned with 4 or the mix is done. */ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) dst[pos] += InSamples[pos] * gain; } CurrentGain = gain; if(!(std::abs(gain) > GainSilenceThreshold)) return; if(size_t todo{(InSamples.size()-pos) >> 2}) { const __m128 gain4{_mm_set1_ps(gain)}; do { const __m128 val4{_mm_load_ps(&InSamples[pos])}; __m128 dry4{_mm_load_ps(&dst[pos])}; dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&dst[pos], dry4); pos += 4; } while(--todo); } for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) dst[pos] += InSamples[pos] * gain; } } // namespace template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { ASSUME(frac < MixerFracOne); const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter); src -= 1; for(float &out_sample : dst) { const uint pi{frac >> CubicPhaseDiffBits}; const float pf{static_cast(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)}; const __m128 pf4{_mm_set1_ps(pf)}; /* Apply the phase interpolated filter. */ /* f = fil + pf*phd */ const __m128 f4 = MLA4(_mm_load_ps(filter[pi].mCoeffs), pf4, _mm_load_ps(filter[pi].mDeltas)); /* r = f*src */ __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(src))}; r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); out_sample = _mm_cvtss_f32(r4); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; const size_t m{state->bsinc.m}; ASSUME(m > 0); ASSUME(frac < MixerFracOne); src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const uint pi{frac >> BSincPhaseDiffBits}; const float pf{static_cast(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)}; // Apply the scale and phase interpolated filter. __m128 r4{_mm_setzero_ps()}; { const __m128 pf4{_mm_set1_ps(pf)}; const float *RESTRICT fil{filter + m*pi*2}; const float *RESTRICT phd{fil + m}; const float *RESTRICT scd{fil + BSincPhaseCount*2*m}; const float *RESTRICT spd{scd + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const __m128 f4 = MLA4( MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])), pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j]))); /* r += f*src */ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); j += 4; } while(--td); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); out_sample = _mm_cvtss_f32(r4); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } template<> float *Resample_(const InterpState *state, float *RESTRICT src, uint frac, uint increment, const al::span dst) { const float *const filter{state->bsinc.filter}; const size_t m{state->bsinc.m}; ASSUME(m > 0); ASSUME(frac < MixerFracOne); src -= state->bsinc.l; for(float &out_sample : dst) { // Calculate the phase index and factor. const uint pi{frac >> BSincPhaseDiffBits}; const float pf{static_cast(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)}; // Apply the phase interpolated filter. __m128 r4{_mm_setzero_ps()}; { const __m128 pf4{_mm_set1_ps(pf)}; const float *RESTRICT fil{filter + m*pi*2}; const float *RESTRICT phd{fil + m}; size_t td{m >> 2}; size_t j{0u}; do { /* f = fil + pf*phd */ const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j])); /* r += f*src */ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); j += 4; } while(--td); } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); out_sample = _mm_cvtss_f32(r4); frac += increment; src += frac>>MixerFracBits; frac &= MixerFracMask; } return dst.data(); } template<> void MixHrtf_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const MixHrtfFilter *hrtfparams, const size_t BufferSize) { MixHrtfBase(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } template<> void MixHrtfBlend_(const float *InSamples, float2 *AccumSamples, const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) { MixHrtfBlendBase(InSamples, AccumSamples, IrSize, oldparams, newparams, BufferSize); } template<> void MixDirectHrtf_(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const al::span InSamples, float2 *AccumSamples, float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) { MixDirectHrtfBase(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, IrSize, BufferSize); } template<> void Mix_(const al::span InSamples, const al::span OutBuffer, float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const auto min_len = minz(Counter, InSamples.size()); const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; for(FloatBufferLine &output : OutBuffer) MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++, *TargetGains++, delta, min_len, aligned_len, Counter); } template<> void Mix_(const al::span InSamples, float *OutBuffer, float &CurrentGain, const float TargetGain, const size_t Counter) { const float delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; const auto min_len = minz(Counter, InSamples.size()); const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len, aligned_len, Counter); }