/* * OpenAL Tone Generator Test * * Copyright (c) 2015 by Chris Robinson * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* This file contains a test for generating waveforms and plays them for a * given length of time. Intended to inspect the behavior of the mixer by * checking the output with a spectrum analyzer and oscilloscope. * * TODO: This would actually be nicer as a GUI app with buttons to start and * stop individual waveforms, include additional whitenoise and pinknoise * generators, and have the ability to hook up EFX filters and effects. */ #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "common/alhelpers.h" #include "win_main_utf8.h" #ifndef M_PI #define M_PI (3.14159265358979323846) #endif enum WaveType { WT_Sine, WT_Square, WT_Sawtooth, WT_Triangle, WT_Impulse, WT_WhiteNoise, }; static const char *GetWaveTypeName(enum WaveType type) { switch(type) { case WT_Sine: return "sine"; case WT_Square: return "square"; case WT_Sawtooth: return "sawtooth"; case WT_Triangle: return "triangle"; case WT_Impulse: return "impulse"; case WT_WhiteNoise: return "noise"; } return "(unknown)"; } static inline ALuint dither_rng(ALuint *seed) { *seed = (*seed * 96314165) + 907633515; return *seed; } static void ApplySin(ALfloat *data, ALdouble g, ALuint srate, ALuint freq) { ALdouble smps_per_cycle = (ALdouble)srate / freq; ALuint i; for(i = 0;i < srate;i++) { ALdouble ival; data[i] += (ALfloat)(sin(modf(i/smps_per_cycle, &ival) * 2.0*M_PI) * g); } } /* Generates waveforms using additive synthesis. Each waveform is constructed * by summing one or more sine waves, up to (and excluding) nyquist. */ static ALuint CreateWave(enum WaveType type, ALuint freq, ALuint srate) { ALuint seed = 22222; ALuint data_size; ALfloat *data; ALuint buffer; ALenum err; ALuint i; data_size = (ALuint)(srate * sizeof(ALfloat)); data = calloc(1, data_size); switch(type) { case WT_Sine: ApplySin(data, 1.0, srate, freq); break; case WT_Square: for(i = 1;freq*i < srate/2;i+=2) ApplySin(data, 4.0/M_PI * 1.0/i, srate, freq*i); break; case WT_Sawtooth: for(i = 1;freq*i < srate/2;i++) ApplySin(data, 2.0/M_PI * ((i&1)*2 - 1.0) / i, srate, freq*i); break; case WT_Triangle: for(i = 1;freq*i < srate/2;i+=2) ApplySin(data, 8.0/(M_PI*M_PI) * (1.0 - (i&2)) / (i*i), srate, freq*i); break; case WT_Impulse: /* NOTE: Impulse isn't handled using additive synthesis, and is * instead just a non-0 sample at a given rate. This can still be * useful to test (other than resampling, the ALSOFT_DEFAULT_REVERB * environment variable can prove useful here to test the reverb * response). */ for(i = 0;i < srate;i++) data[i] = (i%(srate/freq)) ? 0.0f : 1.0f; break; case WT_WhiteNoise: /* NOTE: WhiteNoise is just uniform set of uncorrelated values, and * is not influenced by the waveform frequency. */ for(i = 0;i < srate;i++) { ALuint rng0 = dither_rng(&seed); ALuint rng1 = dither_rng(&seed); data[i] = (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX)); } break; } /* Buffer the audio data into a new buffer object. */ buffer = 0; alGenBuffers(1, &buffer); alBufferData(buffer, AL_FORMAT_MONO_FLOAT32, data, (ALsizei)data_size, (ALsizei)srate); free(data); /* Check if an error occured, and clean up if so. */ err = alGetError(); if(err != AL_NO_ERROR) { fprintf(stderr, "OpenAL Error: %s\n", alGetString(err)); if(alIsBuffer(buffer)) alDeleteBuffers(1, &buffer); return 0; } return buffer; } int main(int argc, char *argv[]) { enum WaveType wavetype = WT_Sine; const char *appname = argv[0]; ALuint source, buffer; ALint last_pos, num_loops; ALint max_loops = 4; ALint srate = -1; ALint tone_freq = 1000; ALCint dev_rate; ALenum state; int i; argv++; argc--; if(InitAL(&argv, &argc) != 0) return 1; if(!alIsExtensionPresent("AL_EXT_FLOAT32")) { fprintf(stderr, "Required AL_EXT_FLOAT32 extension not supported on this device!\n"); CloseAL(); return 1; } for(i = 0;i < argc;i++) { if(strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) { fprintf(stderr, "OpenAL Tone Generator\n" "\n" "Usage: %s [-device ] \n" "\n" "Available options:\n" " --help/-h This help text\n" " -t Time to play a tone (default 5 seconds)\n" " --waveform/-w Waveform type: sine (default), square, sawtooth,\n" " triangle, impulse, noise\n" " --freq/-f Tone frequency (default 1000 hz)\n" " --srate/-s Sampling rate (default output rate)\n", appname ); CloseAL(); return 1; } else if(i+1 < argc && strcmp(argv[i], "-t") == 0) { i++; max_loops = atoi(argv[i]) - 1; } else if(i+1 < argc && (strcmp(argv[i], "--waveform") == 0 || strcmp(argv[i], "-w") == 0)) { i++; if(strcmp(argv[i], "sine") == 0) wavetype = WT_Sine; else if(strcmp(argv[i], "square") == 0) wavetype = WT_Square; else if(strcmp(argv[i], "sawtooth") == 0) wavetype = WT_Sawtooth; else if(strcmp(argv[i], "triangle") == 0) wavetype = WT_Triangle; else if(strcmp(argv[i], "impulse") == 0) wavetype = WT_Impulse; else if(strcmp(argv[i], "noise") == 0) wavetype = WT_WhiteNoise; else fprintf(stderr, "Unhandled waveform: %s\n", argv[i]); } else if(i+1 < argc && (strcmp(argv[i], "--freq") == 0 || strcmp(argv[i], "-f") == 0)) { i++; tone_freq = atoi(argv[i]); if(tone_freq < 1) { fprintf(stderr, "Invalid tone frequency: %s (min: 1hz)\n", argv[i]); tone_freq = 1; } } else if(i+1 < argc && (strcmp(argv[i], "--srate") == 0 || strcmp(argv[i], "-s") == 0)) { i++; srate = atoi(argv[i]); if(srate < 40) { fprintf(stderr, "Invalid sample rate: %s (min: 40hz)\n", argv[i]); srate = 40; } } } { ALCdevice *device = alcGetContextsDevice(alcGetCurrentContext()); alcGetIntegerv(device, ALC_FREQUENCY, 1, &dev_rate); assert(alcGetError(device)==ALC_NO_ERROR && "Failed to get device sample rate"); } if(srate < 0) srate = dev_rate; /* Load the sound into a buffer. */ buffer = CreateWave(wavetype, (ALuint)tone_freq, (ALuint)srate); if(!buffer) { CloseAL(); return 1; } printf("Playing %dhz %s-wave tone with %dhz sample rate and %dhz output, for %d second%s...\n", tone_freq, GetWaveTypeName(wavetype), srate, dev_rate, max_loops+1, max_loops?"s":""); fflush(stdout); /* Create the source to play the sound with. */ source = 0; alGenSources(1, &source); alSourcei(source, AL_BUFFER, (ALint)buffer); assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source"); /* Play the sound for a while. */ num_loops = 0; last_pos = 0; alSourcei(source, AL_LOOPING, (max_loops > 0) ? AL_TRUE : AL_FALSE); alSourcePlay(source); do { ALint pos; al_nssleep(10000000); alGetSourcei(source, AL_SAMPLE_OFFSET, &pos); alGetSourcei(source, AL_SOURCE_STATE, &state); if(pos < last_pos && state == AL_PLAYING) { ++num_loops; if(num_loops >= max_loops) alSourcei(source, AL_LOOPING, AL_FALSE); printf("%d...\n", max_loops - num_loops + 1); fflush(stdout); } last_pos = pos; } while(alGetError() == AL_NO_ERROR && state == AL_PLAYING); /* All done. Delete resources, and close OpenAL. */ alDeleteSources(1, &source); alDeleteBuffers(1, &buffer); /* Close up OpenAL. */ CloseAL(); return 0; }