/* * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * * Copyright (C) 2011-2014 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html * * -------------------------------------------------------------------------- * * A big thanks goes out to all those whose work done in the field of * binaural sound synthesis using measured HRTFs makes this utility and the * OpenAL Soft implementation possible. * * The algorithm for diffuse-field equalization was adapted from the work * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of * MIT Media Laboratory. It operates as follows: * * 1. Take the FFT of each HRIR and only keep the magnitude responses. * 2. Calculate the diffuse-field power-average of all HRIRs weighted by * their contribution to the total surface area covered by their * measurement. * 3. Take the diffuse-field average and limit its magnitude range. * 4. Equalize the responses by using the inverse of the diffuse-field * average. * 5. Reconstruct the minimum-phase responses. * 5. Zero the DC component. * 6. IFFT the result and truncate to the desired-length minimum-phase FIR. * * The spherical head algorithm for calculating propagation delay was adapted * from the paper: * * Modeling Interaural Time Difference Assuming a Spherical Head * Joel David Miller * Music 150, Musical Acoustics, Stanford University * December 2, 2001 * * The formulae for calculating the Kaiser window metrics are from the * the textbook: * * Discrete-Time Signal Processing * Alan V. Oppenheim and Ronald W. Schafer * Prentice-Hall Signal Processing Series * 1999 */ #include "config.h" #include #include #include #include #include #include #ifdef HAVE_STRINGS_H #include #endif // Rely (if naively) on OpenAL's header for the types used for serialization. #include "AL/al.h" #include "AL/alext.h" #ifndef M_PI #define M_PI (3.14159265358979323846) #endif #ifndef HUGE_VAL #define HUGE_VAL (1.0 / 0.0) #endif // The epsilon used to maintain signal stability. #define EPSILON (1e-15) // Constants for accessing the token reader's ring buffer. #define TR_RING_BITS (16) #define TR_RING_SIZE (1 << TR_RING_BITS) #define TR_RING_MASK (TR_RING_SIZE - 1) // The token reader's load interval in bytes. #define TR_LOAD_SIZE (TR_RING_SIZE >> 2) // The maximum identifier length used when processing the data set // definition. #define MAX_IDENT_LEN (16) // The maximum path length used when processing filenames. #define MAX_PATH_LEN (256) // The limits for the sample 'rate' metric in the data set definition and for // resampling. #define MIN_RATE (32000) #define MAX_RATE (96000) // The limits for the HRIR 'points' metric in the data set definition. #define MIN_POINTS (16) #define MAX_POINTS (8192) // The limits to the number of 'azimuths' listed in the data set definition. #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) // The limits for each of the 'azimuths' listed in the data set definition. #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) // The limits for the listener's head 'radius' in the data set definition. #define MIN_RADIUS (0.05) #define MAX_RADIUS (0.15) // The limits for the 'distance' from source to listener in the definition // file. #define MIN_DISTANCE (0.5) #define MAX_DISTANCE (2.5) // The maximum number of channels that can be addressed for a WAVE file // source listed in the data set definition. #define MAX_WAVE_CHANNELS (65535) // The limits to the byte size for a binary source listed in the definition // file. #define MIN_BIN_SIZE (2) #define MAX_BIN_SIZE (4) // The minimum number of significant bits for binary sources listed in the // data set definition. The maximum is calculated from the byte size. #define MIN_BIN_BITS (16) // The limits to the number of significant bits for an ASCII source listed in // the data set definition. #define MIN_ASCII_BITS (16) #define MAX_ASCII_BITS (32) // The limits to the FFT window size override on the command line. #define MIN_FFTSIZE (512) #define MAX_FFTSIZE (16384) // The limits to the equalization range limit on the command line. #define MIN_LIMIT (2.0) #define MAX_LIMIT (120.0) // The limits to the truncation window size on the command line. #define MIN_TRUNCSIZE (8) #define MAX_TRUNCSIZE (128) // The limits to the custom head radius on the command line. #define MIN_CUSTOM_RADIUS (0.05) #define MAX_CUSTOM_RADIUS (0.15) // The truncation window size must be a multiple of the below value to allow // for vectorized convolution. #define MOD_TRUNCSIZE (8) // The defaults for the command line options. #define DEFAULT_EQUALIZE (1) #define DEFAULT_SURFACE (1) #define DEFAULT_LIMIT (24.0) #define DEFAULT_TRUNCSIZE (32) #define DEFAULT_HEAD_MODEL (HM_DATASET) #define DEFAULT_CUSTOM_RADIUS (0.0) // The four-character-codes for RIFF/RIFX WAVE file chunks. #define FOURCC_RIFF (0x46464952) // 'RIFF' #define FOURCC_RIFX (0x58464952) // 'RIFX' #define FOURCC_WAVE (0x45564157) // 'WAVE' #define FOURCC_FMT (0x20746D66) // 'fmt ' #define FOURCC_DATA (0x61746164) // 'data' #define FOURCC_LIST (0x5453494C) // 'LIST' #define FOURCC_WAVL (0x6C766177) // 'wavl' #define FOURCC_SLNT (0x746E6C73) // 'slnt' // The supported wave formats. #define WAVE_FORMAT_PCM (0x0001) #define WAVE_FORMAT_IEEE_FLOAT (0x0003) #define WAVE_FORMAT_EXTENSIBLE (0xFFFE) // The maximum propagation delay value supported by OpenAL Soft. #define MAX_HRTD (63.0) // The OpenAL Soft HRTF format marker. It stands for minimum-phase head // response protocol 01. #define MHR_FORMAT ("MinPHR01") // Byte order for the serialization routines. typedef enum ByteOrderT { BO_NONE, BO_LITTLE, BO_BIG } ByteOrderT; // Source format for the references listed in the data set definition. typedef enum SourceFormatT { SF_NONE, SF_WAVE, // RIFF/RIFX WAVE file. SF_BIN_LE, // Little-endian binary file. SF_BIN_BE, // Big-endian binary file. SF_ASCII // ASCII text file. } SourceFormatT; // Element types for the references listed in the data set definition. typedef enum ElementTypeT { ET_NONE, ET_INT, // Integer elements. ET_FP // Floating-point elements. } ElementTypeT; // Head model used for calculating the impulse delays. typedef enum HeadModelT { HM_NONE, HM_DATASET, // Measure the onset from the dataset. HM_SPHERE // Calculate the onset using a spherical head model. } HeadModelT; // Desired output format from the command line. typedef enum OutputFormatT { OF_NONE, OF_MHR // OpenAL Soft MHR data set file. } OutputFormatT; // Unsigned integer type. typedef unsigned int uint; // Serialization types. The trailing digit indicates the number of bits. typedef ALubyte uint8; typedef ALint int32; typedef ALuint uint32; typedef ALuint64SOFT uint64; // Token reader state for parsing the data set definition. typedef struct TokenReaderT { FILE *mFile; const char *mName; uint mLine; uint mColumn; char mRing[TR_RING_SIZE]; size_t mIn; size_t mOut; } TokenReaderT; // Source reference state used when loading sources. typedef struct SourceRefT { SourceFormatT mFormat; ElementTypeT mType; uint mSize; int mBits; uint mChannel; uint mSkip; uint mOffset; char mPath[MAX_PATH_LEN+1]; } SourceRefT; // The HRIR metrics and data set used when loading, processing, and storing // the resulting HRTF. typedef struct HrirDataT { uint mIrRate; uint mIrCount; uint mIrSize; uint mIrPoints; uint mFftSize; uint mEvCount; uint mEvStart; uint mAzCount[MAX_EV_COUNT]; uint mEvOffset[MAX_EV_COUNT]; double mRadius; double mDistance; double *mHrirs; double *mHrtds; double mMaxHrtd; } HrirDataT; // The resampler metrics and FIR filter. typedef struct ResamplerT { uint mP, mQ, mM, mL; double *mF; } ResamplerT; /***************************** *** Token reader routines *** *****************************/ /* Whitespace is not significant. It can process tokens as identifiers, numbers * (integer and floating-point), strings, and operators. Strings must be * encapsulated by double-quotes and cannot span multiple lines. */ // Setup the reader on the given file. The filename can be NULL if no error // output is desired. static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr) { const char *name = NULL; if(filename) { const char *slash = strrchr(filename, '/'); if(slash) { const char *bslash = strrchr(slash+1, '\\'); if(bslash) name = bslash+1; else name = slash+1; } else { const char *bslash = strrchr(filename, '\\'); if(bslash) name = bslash+1; else name = filename; } } tr->mFile = fp; tr->mName = name; tr->mLine = 1; tr->mColumn = 1; tr->mIn = 0; tr->mOut = 0; } // Prime the reader's ring buffer, and return a result indicating that there // is text to process. static int TrLoad(TokenReaderT *tr) { size_t toLoad, in, count; toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) { // Load TR_LOAD_SIZE (or less if at the end of the file) per read. toLoad = TR_LOAD_SIZE; in = tr->mIn&TR_RING_MASK; count = TR_RING_SIZE - in; if(count < toLoad) { tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); } else tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); if(tr->mOut >= TR_RING_SIZE) { tr->mOut -= TR_RING_SIZE; tr->mIn -= TR_RING_SIZE; } } if(tr->mIn > tr->mOut) return 1; return 0; } // Error display routine. Only displays when the base name is not NULL. static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) { if(!tr->mName) return; fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column); vfprintf(stderr, format, argPtr); } // Used to display an error at a saved line/column. static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) { va_list argPtr; va_start(argPtr, format); TrErrorVA(tr, line, column, format, argPtr); va_end(argPtr); } // Used to display an error at the current line/column. static void TrError(const TokenReaderT *tr, const char *format, ...) { va_list argPtr; va_start(argPtr, format); TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); va_end(argPtr); } // Skips to the next line. static void TrSkipLine(TokenReaderT *tr) { char ch; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; break; } tr->mColumn ++; } } // Skips to the next token. static int TrSkipWhitespace(TokenReaderT *tr) { char ch; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(isspace(ch)) { tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; } else tr->mColumn++; } else if(ch == '#') TrSkipLine(tr); else return 1; } return 0; } // Get the line and/or column of the next token (or the end of input). static void TrIndication(TokenReaderT *tr, uint *line, uint *column) { TrSkipWhitespace(tr); if(line) *line = tr->mLine; if(column) *column = tr->mColumn; } // Checks to see if a token is the given operator. It does not display any // errors and will not proceed to the next token. static int TrIsOperator(TokenReaderT *tr, const char *op) { size_t out, len; char ch; if(!TrSkipWhitespace(tr)) return 0; out = tr->mOut; len = 0; while(op[len] != '\0' && out < tr->mIn) { ch = tr->mRing[out&TR_RING_MASK]; if(ch != op[len]) break; len++; out++; } if(op[len] == '\0') return 1; return 0; } /* The TrRead*() routines obtain the value of a matching token type. They * display type, form, and boundary errors and will proceed to the next * token. */ // Reads and validates an identifier token. static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '_' || isalpha(ch)) { len = 0; do { if(len < maxLen) ident[len] = ch; len++; tr->mOut++; if(!TrLoad(tr)) break; ch = tr->mRing[tr->mOut&TR_RING_MASK]; } while(ch == '_' || isdigit(ch) || isalpha(ch)); tr->mColumn += len; if(len < maxLen) { ident[len] = '\0'; return 1; } TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); return 0; } } TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); return 0; } // Reads and validates (including bounds) an integer token. static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) { uint col, digis, len; char ch, temp[64+1]; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } digis = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Integer is too long."); return 0; } temp[len] = '\0'; *value = strtol(temp, NULL, 10); if(*value < loBound || *value > hiBound) { TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); return (0); } return (1); } } TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); return 0; } // Reads and validates (including bounds) a float token. static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) { uint col, digis, len; char ch, temp[64+1]; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } digis = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(ch == '.') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(digis > 0) { if(ch == 'E' || ch == 'e') { if(len < 64) temp[len] = ch; len++; digis = 0; tr->mOut++; if(ch == '+' || ch == '-') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Float is too long."); return 0; } temp[len] = '\0'; *value = strtod(temp, NULL); if(*value < loBound || *value > hiBound) { TrErrorAt (tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); return 0; } return 1; } } else tr->mColumn += len; } TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); return 0; } // Reads and validates a string token. static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '\"') { tr->mOut++; len = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; tr->mOut++; if(ch == '\"') break; if(ch == '\n') { TrErrorAt (tr, tr->mLine, col, "Unterminated string at end of line.\n"); return 0; } if(len < maxLen) text[len] = ch; len++; } if(ch != '\"') { tr->mColumn += 1 + len; TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); return 0; } tr->mColumn += 2 + len; if(len > maxLen) { TrErrorAt (tr, tr->mLine, col, "String is too long.\n"); return 0; } text[len] = '\0'; return 1; } } TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); return 0; } // Reads and validates the given operator. static int TrReadOperator(TokenReaderT *tr, const char *op) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; while(op[len] != '\0' && TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch != op[len]) break; len++; tr->mOut++; } tr->mColumn += len; if(op[len] == '\0') return 1; } TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); return 0; } /* Performs a string substitution. Any case-insensitive occurrences of the * pattern string are replaced with the replacement string. The result is * truncated if necessary. */ static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out) { size_t inLen, patLen, repLen; size_t si, di; int truncated; inLen = strlen(in); patLen = strlen(pat); repLen = strlen(rep); si = 0; di = 0; truncated = 0; while(si < inLen && di < maxLen) { if(patLen <= inLen-si) { if(strncasecmp(&in[si], pat, patLen) == 0) { if(repLen > maxLen-di) { repLen = maxLen - di; truncated = 1; } strncpy(&out[di], rep, repLen); si += patLen; di += repLen; } } out[di] = in[si]; si++; di++; } if(si < inLen) truncated = 1; out[di] = '\0'; return !truncated; } /********************* *** Math routines *** *********************/ // Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013). #if defined(_MSC_VER) && _MSC_VER < 1800 static double round(double val) { if(val < 0.0) return ceil(val-0.5); return floor(val+0.5); } static double fmin(double a, double b) { return (ab) ? a : b; } #endif // Simple clamp routine. static double Clamp(const double val, const double lower, const double upper) { return fmin(fmax(val, lower), upper); } // Performs linear interpolation. static double Lerp(const double a, const double b, const double f) { return a + (f * (b - a)); } // Performs a high-passed triangular probability density function dither from // a double to an integer. It assumes the input sample is already scaled. static int HpTpdfDither(const double in, int *hpHist) { static const double PRNG_SCALE = 1.0 / (RAND_MAX+1.0); int prn; double out; prn = rand(); out = round(in + (PRNG_SCALE * (prn - *hpHist))); *hpHist = prn; return (int)out; } // Allocates an array of doubles. static double *CreateArray(size_t n) { double *a; if(n == 0) n = 1; a = calloc(n, sizeof(double)); if(a == NULL) { fprintf(stderr, "Error: Out of memory.\n"); exit(-1); } return a; } // Frees an array of doubles. static void DestroyArray(double *a) { free(a); } // Complex number routines. All outputs must be non-NULL. // Magnitude/absolute value. static double ComplexAbs(const double r, const double i) { return sqrt(r*r + i*i); } // Multiply. static void ComplexMul(const double aR, const double aI, const double bR, const double bI, double *outR, double *outI) { *outR = (aR * bR) - (aI * bI); *outI = (aI * bR) + (aR * bI); } // Base-e exponent. static void ComplexExp(const double inR, const double inI, double *outR, double *outI) { double e = exp(inR); *outR = e * cos(inI); *outI = e * sin(inI); } /* Fast Fourier transform routines. The number of points must be a power of * two. In-place operation is possible only if both the real and imaginary * parts are in-place together. */ // Performs bit-reversal ordering. static void FftArrange(const uint n, const double *inR, const double *inI, double *outR, double *outI) { uint rk, k, m; double tempR, tempI; if(inR == outR && inI == outI) { // Handle in-place arrangement. rk = 0; for(k = 0;k < n;k++) { if(rk > k) { tempR = inR[rk]; tempI = inI[rk]; outR[rk] = inR[k]; outI[rk] = inI[k]; outR[k] = tempR; outI[k] = tempI; } m = n; while(rk&(m >>= 1)) rk &= ~m; rk |= m; } } else { // Handle copy arrangement. rk = 0; for(k = 0;k < n;k++) { outR[rk] = inR[k]; outI[rk] = inI[k]; m = n; while(rk&(m >>= 1)) rk &= ~m; rk |= m; } } } // Performs the summation. static void FftSummation(const uint n, const double s, double *re, double *im) { double pi; uint m, m2; double vR, vI, wR, wI; uint i, k, mk; double tR, tI; pi = s * M_PI; for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1) { // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) vR = sin(0.5 * pi / m); vR = -2.0 * vR * vR; vI = -sin(pi / m); // w = Complex (1.0, 0.0) wR = 1.0; wI = 0.0; for(i = 0;i < m;i++) { for(k = i;k < n;k += m2) { mk = k + m; // t = ComplexMul(w, out[km2]) tR = (wR * re[mk]) - (wI * im[mk]); tI = (wR * im[mk]) + (wI * re[mk]); // out[mk] = ComplexSub (out [k], t) re[mk] = re[k] - tR; im[mk] = im[k] - tI; // out[k] = ComplexAdd (out [k], t) re[k] += tR; im[k] += tI; } // t = ComplexMul (v, w) tR = (vR * wR) - (vI * wI); tI = (vR * wI) + (vI * wR); // w = ComplexAdd (w, t) wR += tR; wI += tI; } } } // Performs a forward FFT. static void FftForward(const uint n, const double *inR, const double *inI, double *outR, double *outI) { FftArrange(n, inR, inI, outR, outI); FftSummation(n, 1.0, outR, outI); } // Performs an inverse FFT. static void FftInverse(const uint n, const double *inR, const double *inI, double *outR, double *outI) { double f; uint i; FftArrange(n, inR, inI, outR, outI); FftSummation(n, -1.0, outR, outI); f = 1.0 / n; for(i = 0;i < n;i++) { outR[i] *= f; outI[i] *= f; } } /* Calculate the complex helical sequence (or discrete-time analytical * signal) of the given input using the Hilbert transform. Given the * negative natural logarithm of a signal's magnitude response, the imaginary * components can be used as the angles for minimum-phase reconstruction. */ static void Hilbert(const uint n, const double *in, double *outR, double *outI) { uint i; if(in == outR) { // Handle in-place operation. for(i = 0;i < n;i++) outI[i] = 0.0; } else { // Handle copy operation. for(i = 0;i < n;i++) { outR[i] = in[i]; outI[i] = 0.0; } } FftForward(n, outR, outI, outR, outI); /* Currently the Fourier routines operate only on point counts that are * powers of two. If that changes and n is odd, the following conditional * should be: i < (n + 1) / 2. */ for(i = 1;i < (n/2);i++) { outR[i] *= 2.0; outI[i] *= 2.0; } // If n is odd, the following increment should be skipped. i++; for(;i < n;i++) { outR[i] = 0.0; outI[i] = 0.0; } FftInverse(n, outR, outI, outR, outI); } /* Calculate the magnitude response of the given input. This is used in * place of phase decomposition, since the phase residuals are discarded for * minimum phase reconstruction. The mirrored half of the response is also * discarded. */ static void MagnitudeResponse(const uint n, const double *inR, const double *inI, double *out) { const uint m = 1 + (n / 2); uint i; for(i = 0;i < m;i++) out[i] = fmax(ComplexAbs(inR[i], inI[i]), EPSILON); } /* Apply a range limit (in dB) to the given magnitude response. This is used * to adjust the effects of the diffuse-field average on the equalization * process. */ static void LimitMagnitudeResponse(const uint n, const double limit, const double *in, double *out) { const uint m = 1 + (n / 2); double halfLim; uint i, lower, upper; double ave; halfLim = limit / 2.0; // Convert the response to dB. for(i = 0;i < m;i++) out[i] = 20.0 * log10(in[i]); // Use six octaves to calculate the average magnitude of the signal. lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1; upper = ((uint)floor(n / pow(2.0, 2.0))) - 1; ave = 0.0; for(i = lower;i <= upper;i++) ave += out[i]; ave /= upper - lower + 1; // Keep the response within range of the average magnitude. for(i = 0;i < m;i++) out[i] = Clamp(out[i], ave - halfLim, ave + halfLim); // Convert the response back to linear magnitude. for(i = 0;i < m;i++) out[i] = pow(10.0, out[i] / 20.0); } /* Reconstructs the minimum-phase component for the given magnitude response * of a signal. This is equivalent to phase recomposition, sans the missing * residuals (which were discarded). The mirrored half of the response is * reconstructed. */ static void MinimumPhase(const uint n, const double *in, double *outR, double *outI) { const uint m = 1 + (n / 2); double aR, aI; double *mags; uint i; mags = CreateArray(n); for(i = 0;i < m;i++) { mags[i] = fmax(in[i], EPSILON); outR[i] = -log(mags[i]); } for(;i < n;i++) { mags[i] = mags[n - i]; outR[i] = outR[n - i]; } Hilbert(n, outR, outR, outI); // Remove any DC offset the filter has. outR[0] = 0.0; outI[0] = 0.0; for(i = 1;i < n;i++) { ComplexExp(0.0, outI[i], &aR, &aI); ComplexMul(mags[i], 0.0, aR, aI, &outR[i], &outI[i]); } DestroyArray(mags); } /*************************** *** Resampler functions *** ***************************/ /* This is the normalized cardinal sine (sinc) function. * * sinc(x) = { 1, x = 0 * { sin(pi x) / (pi x), otherwise. */ static double Sinc(const double x) { if(fabs(x) < EPSILON) return 1.0; return sin(M_PI * x) / (M_PI * x); } /* The zero-order modified Bessel function of the first kind, used for the * Kaiser window. * * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) * = sum_{k=0}^inf ((x / 2)^k / k!)^2 */ static double BesselI_0(const double x) { double term, sum, x2, y, last_sum; int k; // Start at k=1 since k=0 is trivial. term = 1.0; sum = 1.0; x2 = x/2.0; k = 1; // Let the integration converge until the term of the sum is no longer // significant. do { y = x2 / k; k++; last_sum = sum; term *= y * y; sum += term; } while(sum != last_sum); return sum; } /* Calculate a Kaiser window from the given beta value and a normalized k * [-1, 1]. * * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 * { 0, elsewhere. * * Where k can be calculated as: * * k = i / l, where -l <= i <= l. * * or: * * k = 2 i / M - 1, where 0 <= i <= M. */ static double Kaiser(const double b, const double k) { if(!(k >= -1.0 && k <= 1.0)) return 0.0; return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b); } // Calculates the greatest common divisor of a and b. static uint Gcd(uint x, uint y) { while(y > 0) { uint z = y; y = x % y; x = z; } return x; } /* Calculates the size (order) of the Kaiser window. Rejection is in dB and * the transition width is normalized frequency (0.5 is nyquist). * * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21 * { ceil(5.79 / 2 pi f_t), r <= 21. * */ static uint CalcKaiserOrder(const double rejection, const double transition) { double w_t = 2.0 * M_PI * transition; if(rejection > 21.0) return (uint)ceil((rejection - 7.95) / (2.285 * w_t)); return (uint)ceil(5.79 / w_t); } // Calculates the beta value of the Kaiser window. Rejection is in dB. static double CalcKaiserBeta(const double rejection) { if(rejection > 50.0) return 0.1102 * (rejection - 8.7); if(rejection >= 21.0) return (0.5842 * pow(rejection - 21.0, 0.4)) + (0.07886 * (rejection - 21.0)); return 0.0; } /* Calculates a point on the Kaiser-windowed sinc filter for the given half- * width, beta, gain, and cutoff. The point is specified in non-normalized * samples, from 0 to M, where M = (2 l + 1). * * w(k) 2 p f_t sinc(2 f_t x) * * x -- centered sample index (i - l) * k -- normalized and centered window index (x / l) * w(k) -- window function (Kaiser) * p -- gain compensation factor when sampling * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) */ static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i) { return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l)); } /* This is a polyphase sinc-filtered resampler. * * Upsample Downsample * * p/q = 3/2 p/q = 3/5 * * M-+-+-+-> M-+-+-+-> * -------------------+ ---------------------+ * p s * f f f f|f| | p s * f f f f f | * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| | * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 | * s * f|f|f f f | s * f f|f|f f | * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 | * --------+=+--------+ 0 * |0|0 0 0 0 | * d . d .|d|. d . d ----------+=+--------+ * d . . . .|d|. . . . * q-> * q-+-+-+-> * * P_f(i,j) = q i mod p + pj * P_s(i,j) = floor(q i / p) - j * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} { * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M * { 0, P_f(i,j) >= M. } */ // Calculate the resampling metrics and build the Kaiser-windowed sinc filter // that's used to cut frequencies above the destination nyquist. static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate) { double cutoff, width, beta; uint gcd, l; int i; gcd = Gcd(srcRate, dstRate); rs->mP = dstRate / gcd; rs->mQ = srcRate / gcd; /* The cutoff is adjusted by half the transition width, so the transition * ends before the nyquist (0.5). Both are scaled by the downsampling * factor. */ if(rs->mP > rs->mQ) { cutoff = 0.45 / rs->mP; width = 0.1 / rs->mP; } else { cutoff = 0.45 / rs->mQ; width = 0.1 / rs->mQ; } // A rejection of -180 dB is used for the stop band. l = CalcKaiserOrder(180.0, width) / 2; beta = CalcKaiserBeta(180.0); rs->mM = (2 * l) + 1; rs->mL = l; rs->mF = CreateArray(rs->mM); for(i = 0;i < ((int)rs->mM);i++) rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i); } // Clean up after the resampler. static void ResamplerClear(ResamplerT *rs) { DestroyArray(rs->mF); rs->mF = NULL; } // Perform the upsample-filter-downsample resampling operation using a // polyphase filter implementation. static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out) { const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL; const double *f = rs->mF; uint j_f, j_s; double *work; uint i; if(outN == 0) return; // Handle in-place operation. if(in == out) work = CreateArray(outN); else work = out; // Resample the input. for(i = 0;i < outN;i++) { double r = 0.0; // Input starts at l to compensate for the filter delay. This will // drop any build-up from the first half of the filter. j_f = (l + (q * i)) % p; j_s = (l + (q * i)) / p; while(j_f < m) { // Only take input when 0 <= j_s < inN. This single unsigned // comparison catches both cases. if(j_s < inN) r += f[j_f] * in[j_s]; j_f += p; j_s--; } work[i] = r; } // Clean up after in-place operation. if(in == out) { for(i = 0;i < outN;i++) out[i] = work[i]; DestroyArray(work); } } /************************* *** File source input *** *************************/ // Read a binary value of the specified byte order and byte size from a file, // storing it as a 32-bit unsigned integer. static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out) { uint8 in[4]; uint32 accum; uint i; if(fread(in, 1, bytes, fp) != bytes) { fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); return 0; } accum = 0; switch(order) { case BO_LITTLE: for(i = 0;i < bytes;i++) accum = (accum<<8) | in[bytes - i - 1]; break; case BO_BIG: for(i = 0;i < bytes;i++) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } // Read a binary value of the specified byte order from a file, storing it as // a 64-bit unsigned integer. static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out) { uint8 in [8]; uint64 accum; uint i; if(fread(in, 1, 8, fp) != 8) { fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); return 0; } accum = 0ULL; switch(order) { case BO_LITTLE: for(i = 0;i < 8;i++) accum = (accum<<8) | in[8 - i - 1]; break; case BO_BIG: for(i = 0;i < 8;i++) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } /* Read a binary value of the specified type, byte order, and byte size from * a file, converting it to a double. For integer types, the significant * bits are used to normalize the result. The sign of bits determines * whether they are padded toward the MSB (negative) or LSB (positive). * Floating-point types are not normalized. */ static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) { union { uint32 ui; int32 i; float f; } v4; union { uint64 ui; double f; } v8; *out = 0.0; if(bytes > 4) { if(!ReadBin8(fp, filename, order, &v8.ui)) return 0; if(type == ET_FP) *out = v8.f; } else { if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) return 0; if(type == ET_FP) *out = v4.f; else { if(bits > 0) v4.ui >>= (8*bytes) - ((uint)bits); else v4.ui &= (0xFFFFFFFF >> (32+bits)); if(v4.ui&(uint)(1<<(abs(bits)-1))) v4.ui |= (0xFFFFFFFF << abs (bits)); *out = v4.i / (double)(1<<(abs(bits)-1)); } } return 1; } /* Read an ascii value of the specified type from a file, converting it to a * double. For integer types, the significant bits are used to normalize the * result. The sign of the bits should always be positive. This also skips * up to one separator character before the element itself. */ static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) { if(TrIsOperator(tr, ",")) TrReadOperator(tr, ","); else if(TrIsOperator(tr, ":")) TrReadOperator(tr, ":"); else if(TrIsOperator(tr, ";")) TrReadOperator(tr, ";"); else if(TrIsOperator(tr, "|")) TrReadOperator(tr, "|"); if(type == ET_FP) { if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out)) { fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); return 0; } } else { int v; if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) { fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); return 0; } *out = v / (double)((1<<(bits-1))-1); } return 1; } // Read the RIFF/RIFX WAVE format chunk from a file, validating it against // the source parameters and data set metrics. static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) { uint32 fourCC, chunkSize; uint32 format, channels, rate, dummy, block, size, bits; chunkSize = 0; do { if (chunkSize > 0) fseek (fp, (long) chunkSize, SEEK_CUR); if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) return 0; } while(fourCC != FOURCC_FMT); if(!ReadBin4(fp, src->mPath, order, 2, & format) || !ReadBin4(fp, src->mPath, order, 2, & channels) || !ReadBin4(fp, src->mPath, order, 4, & rate) || !ReadBin4(fp, src->mPath, order, 4, & dummy) || !ReadBin4(fp, src->mPath, order, 2, & block)) return (0); block /= channels; if(chunkSize > 14) { if(!ReadBin4(fp, src->mPath, order, 2, &size)) return 0; size /= 8; if(block > size) size = block; } else size = block; if(format == WAVE_FORMAT_EXTENSIBLE) { fseek(fp, 2, SEEK_CUR); if(!ReadBin4(fp, src->mPath, order, 2, &bits)) return 0; if(bits == 0) bits = 8 * size; fseek(fp, 4, SEEK_CUR); if(!ReadBin4(fp, src->mPath, order, 2, &format)) return 0; fseek(fp, (long)(chunkSize - 26), SEEK_CUR); } else { bits = 8 * size; if(chunkSize > 14) fseek(fp, (long)(chunkSize - 16), SEEK_CUR); else fseek(fp, (long)(chunkSize - 14), SEEK_CUR); } if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) { fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath); return 0; } if(src->mChannel >= channels) { fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath); return 0; } if(rate != hrirRate) { fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); return 0; } if(format == WAVE_FORMAT_PCM) { if(size < 2 || size > 4) { fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); return 0; } if(bits < 16 || bits > (8*size)) { fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath); return 0; } src->mType = ET_INT; } else { if(size != 4 && size != 8) { fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); return 0; } src->mType = ET_FP; } src->mSize = size; src->mBits = (int)bits; src->mSkip = channels; return 1; } // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { int pre, post, skip; uint i; pre = (int)(src->mSize * src->mChannel); post = (int)(src->mSize * (src->mSkip - src->mChannel - 1)); skip = 0; for(i = 0;i < n;i++) { skip += pre; if(skip > 0) fseek(fp, skip, SEEK_CUR); if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; skip = post; } if(skip > 0) fseek(fp, skip, SEEK_CUR); return 1; } // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to // doubles. static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { uint32 fourCC, chunkSize, listSize, count; uint block, skip, offset, i; double lastSample; for (;;) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, & fourCC) || !ReadBin4(fp, src->mPath, order, 4, & chunkSize)) return (0); if(fourCC == FOURCC_DATA) { block = src->mSize * src->mSkip; count = chunkSize / block; if(count < (src->mOffset + n)) { fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); return 0; } fseek(fp, (long)(src->mOffset * block), SEEK_CUR); if(!ReadWaveData(fp, src, order, n, &hrir[0])) return 0; return 1; } else if(fourCC == FOURCC_LIST) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; chunkSize -= 4; if(fourCC == FOURCC_WAVL) break; } if(chunkSize > 0) fseek(fp, (long)chunkSize, SEEK_CUR); } listSize = chunkSize; block = src->mSize * src->mSkip; skip = src->mOffset; offset = 0; lastSample = 0.0; while(offset < n && listSize > 8) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) return 0; listSize -= 8 + chunkSize; if(fourCC == FOURCC_DATA) { count = chunkSize / block; if(count > skip) { fseek(fp, (long)(skip * block), SEEK_CUR); chunkSize -= skip * block; count -= skip; skip = 0; if(count > (n - offset)) count = n - offset; if(!ReadWaveData(fp, src, order, count, &hrir[offset])) return 0; chunkSize -= count * block; offset += count; lastSample = hrir [offset - 1]; } else { skip -= count; count = 0; } } else if(fourCC == FOURCC_SLNT) { if(!ReadBin4(fp, src->mPath, order, 4, &count)) return 0; chunkSize -= 4; if(count > skip) { count -= skip; skip = 0; if(count > (n - offset)) count = n - offset; for(i = 0; i < count; i ++) hrir[offset + i] = lastSample; offset += count; } else { skip -= count; count = 0; } } if(chunkSize > 0) fseek(fp, (long)chunkSize, SEEK_CUR); } if(offset < n) { fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); return 0; } return 1; } // Load a source HRIR from a RIFF/RIFX WAVE file. static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) { uint32 fourCC, dummy; ByteOrderT order; if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) return 0; if(fourCC == FOURCC_RIFF) order = BO_LITTLE; else if(fourCC == FOURCC_RIFX) order = BO_BIG; else { fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); return 0; } if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; if(fourCC != FOURCC_WAVE) { fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); return 0; } if(!ReadWaveFormat(fp, order, hrirRate, src)) return 0; if(!ReadWaveList(fp, src, order, n, hrir)) return 0; return 1; } // Load a source HRIR from a binary file. static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { uint i; fseek(fp, (long)src->mOffset, SEEK_SET); for(i = 0;i < n;i++) { if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; if(src->mSkip > 0) fseek(fp, (long)src->mSkip, SEEK_CUR); } return 1; } // Load a source HRIR from an ASCII text file containing a list of elements // separated by whitespace or common list operators (',', ';', ':', '|'). static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) { TokenReaderT tr; uint i, j; double dummy; TrSetup(fp, NULL, &tr); for(i = 0;i < src->mOffset;i++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) return (0); } for(i = 0;i < n;i++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i])) return 0; for(j = 0;j < src->mSkip;j++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) return 0; } } return 1; } // Load a source HRIR from a supported file type. static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) { int result; FILE *fp; if (src->mFormat == SF_ASCII) fp = fopen(src->mPath, "r"); else fp = fopen(src->mPath, "rb"); if(fp == NULL) { fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath); return 0; } if(src->mFormat == SF_WAVE) result = LoadWaveSource(fp, src, hrirRate, n, hrir); else if(src->mFormat == SF_BIN_LE) result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); else if(src->mFormat == SF_BIN_BE) result = LoadBinarySource(fp, src, BO_BIG, n, hrir); else result = LoadAsciiSource(fp, src, n, hrir); fclose(fp); return result; } /*************************** *** File storage output *** ***************************/ // Write an ASCII string to a file. static int WriteAscii(const char *out, FILE *fp, const char *filename) { size_t len; len = strlen(out); if(fwrite(out, 1, len, fp) != len) { fclose(fp); fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); return 0; } return 1; } // Write a binary value of the given byte order and byte size to a file, // loading it from a 32-bit unsigned integer. static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename) { uint8 out[4]; uint i; switch(order) { case BO_LITTLE: for(i = 0;i < bytes;i++) out[i] = (in>>(i*8)) & 0x000000FF; break; case BO_BIG: for(i = 0;i < bytes;i++) out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF; break; default: break; } if(fwrite(out, 1, bytes, fp) != bytes) { fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); return 0; } return 1; } // Store the OpenAL Soft HRTF data set. static int StoreMhr(const HrirDataT *hData, const char *filename) { uint e, step, end, n, j, i; int hpHist, v; FILE *fp; if((fp=fopen(filename, "wb")) == NULL) { fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename); return 0; } if(!WriteAscii(MHR_FORMAT, fp, filename)) return 0; if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename)) return 0; if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename)) return 0; if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mEvCount, fp, filename)) return 0; for(e = 0;e < hData->mEvCount;e++) { if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mAzCount[e], fp, filename)) return 0; } step = hData->mIrSize; end = hData->mIrCount * step; n = hData->mIrPoints; srand(0x31DF840C); for(j = 0;j < end;j += step) { hpHist = 0; for(i = 0;i < n;i++) { v = HpTpdfDither(32767.0 * hData->mHrirs[j+i], &hpHist); if(!WriteBin4(BO_LITTLE, 2, (uint32)v, fp, filename)) return 0; } } for(j = 0;j < hData->mIrCount;j++) { v = (int)fmin(round(hData->mIrRate * hData->mHrtds[j]), MAX_HRTD); if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) return 0; } fclose(fp); return 1; } /*********************** *** HRTF processing *** ***********************/ // Calculate the onset time of an HRIR and average it with any existing // timing for its elevation and azimuth. static void AverageHrirOnset(const double *hrir, const double f, const uint ei, const uint ai, const HrirDataT *hData) { double mag; uint n, i, j; mag = 0.0; n = hData->mIrPoints; for(i = 0;i < n;i++) mag = fmax(fabs(hrir[i]), mag); mag *= 0.15; for(i = 0;i < n;i++) { if(fabs(hrir[i]) >= mag) break; } j = hData->mEvOffset[ei] + ai; hData->mHrtds[j] = Lerp(hData->mHrtds[j], ((double)i) / hData->mIrRate, f); } // Calculate the magnitude response of an HRIR and average it with any // existing responses for its elevation and azimuth. static void AverageHrirMagnitude(const double *hrir, const double f, const uint ei, const uint ai, const HrirDataT *hData) { double *re, *im; uint n, m, i, j; n = hData->mFftSize; re = CreateArray(n); im = CreateArray(n); for(i = 0;i < hData->mIrPoints;i++) { re[i] = hrir[i]; im[i] = 0.0; } for(;i < n;i++) { re[i] = 0.0; im[i] = 0.0; } FftForward(n, re, im, re, im); MagnitudeResponse(n, re, im, re); m = 1 + (n / 2); j = (hData->mEvOffset[ei] + ai) * hData->mIrSize; for(i = 0;i < m;i++) hData->mHrirs[j+i] = Lerp(hData->mHrirs[j+i], re[i], f); DestroyArray(im); DestroyArray(re); } /* Calculate the contribution of each HRIR to the diffuse-field average based * on the area of its surface patch. All patches are centered at the HRIR * coordinates on the unit sphere and are measured by solid angle. */ static void CalculateDfWeights(const HrirDataT *hData, double *weights) { double evs, sum, ev, up_ev, down_ev, solidAngle; uint ei; evs = 90.0 / (hData->mEvCount - 1); sum = 0.0; for(ei = hData->mEvStart;ei < hData->mEvCount;ei++) { // For each elevation, calculate the upper and lower limits of the // patch band. ev = -90.0 + (ei * 2.0 * evs); if(ei < (hData->mEvCount - 1)) up_ev = (ev + evs) * M_PI / 180.0; else up_ev = M_PI / 2.0; if(ei > 0) down_ev = (ev - evs) * M_PI / 180.0; else down_ev = -M_PI / 2.0; // Calculate the area of the patch band. solidAngle = 2.0 * M_PI * (sin(up_ev) - sin(down_ev)); // Each weight is the area of one patch. weights[ei] = solidAngle / hData->mAzCount [ei]; // Sum the total surface area covered by the HRIRs. sum += solidAngle; } // Normalize the weights given the total surface coverage. for(ei = hData->mEvStart;ei < hData->mEvCount;ei++) weights[ei] /= sum; } /* Calculate the diffuse-field average from the given magnitude responses of * the HRIR set. Weighting can be applied to compensate for the varying * surface area covered by each HRIR. The final average can then be limited * by the specified magnitude range (in positive dB; 0.0 to skip). */ static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const int weighted, const double limit, double *dfa) { uint ei, ai, count, step, start, end, m, j, i; double *weights; weights = CreateArray(hData->mEvCount); if(weighted) { // Use coverage weighting to calculate the average. CalculateDfWeights(hData, weights); } else { // If coverage weighting is not used, the weights still need to be // averaged by the number of HRIRs. count = 0; for(ei = hData->mEvStart;ei < hData->mEvCount;ei++) count += hData->mAzCount [ei]; for(ei = hData->mEvStart;ei < hData->mEvCount;ei++) weights[ei] = 1.0 / count; } ei = hData->mEvStart; ai = 0; step = hData->mIrSize; start = hData->mEvOffset[ei] * step; end = hData->mIrCount * step; m = 1 + (hData->mFftSize / 2); for(i = 0;i < m;i++) dfa[i] = 0.0; for(j = start;j < end;j += step) { // Get the weight for this HRIR's contribution. double weight = weights[ei]; // Add this HRIR's weighted power average to the total. for(i = 0;i < m;i++) dfa[i] += weight * hData->mHrirs[j+i] * hData->mHrirs[j+i]; // Determine the next weight to use. ai++; if(ai >= hData->mAzCount[ei]) { ei++; ai = 0; } } // Finish the average calculation and keep it from being too small. for(i = 0;i < m;i++) dfa[i] = fmax(sqrt(dfa[i]), EPSILON); // Apply a limit to the magnitude range of the diffuse-field average if // desired. if(limit > 0.0) LimitMagnitudeResponse(hData->mFftSize, limit, dfa, dfa); DestroyArray(weights); } // Perform diffuse-field equalization on the magnitude responses of the HRIR // set using the given average response. static void DiffuseFieldEqualize(const double *dfa, const HrirDataT *hData) { uint step, start, end, m, j, i; step = hData->mIrSize; start = hData->mEvOffset[hData->mEvStart] * step; end = hData->mIrCount * step; m = 1 + (hData->mFftSize / 2); for(j = start;j < end;j += step) { for(i = 0;i < m;i++) hData->mHrirs[j+i] /= dfa[i]; } } // Perform minimum-phase reconstruction using the magnitude responses of the // HRIR set. static void ReconstructHrirs(const HrirDataT *hData) { uint step, start, end, n, j, i; double *re, *im; step = hData->mIrSize; start = hData->mEvOffset[hData->mEvStart] * step; end = hData->mIrCount * step; n = hData->mFftSize; re = CreateArray(n); im = CreateArray(n); for(j = start;j < end;j += step) { MinimumPhase(n, &hData->mHrirs[j], re, im); FftInverse(n, re, im, re, im); for(i = 0;i < hData->mIrPoints;i++) hData->mHrirs[j+i] = re[i]; } DestroyArray (im); DestroyArray (re); } // Resamples the HRIRs for use at the given sampling rate. static void ResampleHrirs(const uint rate, HrirDataT *hData) { uint n, step, start, end, j; ResamplerT rs; ResamplerSetup(&rs, hData->mIrRate, rate); n = hData->mIrPoints; step = hData->mIrSize; start = hData->mEvOffset[hData->mEvStart] * step; end = hData->mIrCount * step; for(j = start;j < end;j += step) ResamplerRun(&rs, n, &hData->mHrirs[j], n, &hData->mHrirs[j]); ResamplerClear(&rs); hData->mIrRate = rate; } /* Given an elevation index and an azimuth, calculate the indices of the two * HRIRs that bound the coordinate along with a factor for calculating the * continous HRIR using interpolation. */ static void CalcAzIndices(const HrirDataT *hData, const uint ei, const double az, uint *j0, uint *j1, double *jf) { double af; uint ai; af = ((2.0*M_PI) + az) * hData->mAzCount[ei] / (2.0*M_PI); ai = ((uint)af) % hData->mAzCount[ei]; af -= floor(af); *j0 = hData->mEvOffset[ei] + ai; *j1 = hData->mEvOffset[ei] + ((ai+1) % hData->mAzCount [ei]); *jf = af; } // Synthesize any missing onset timings at the bottom elevations. This just // blends between slightly exaggerated known onsets. Not an accurate model. static void SynthesizeOnsets(HrirDataT *hData) { uint oi, e, a, j0, j1; double t, of, jf; oi = hData->mEvStart; t = 0.0; for(a = 0;a < hData->mAzCount[oi];a++) t += hData->mHrtds[hData->mEvOffset[oi] + a]; hData->mHrtds[0] = 1.32e-4 + (t / hData->mAzCount[oi]); for(e = 1;e < hData->mEvStart;e++) { of = ((double)e) / hData->mEvStart; for(a = 0;a < hData->mAzCount[e];a++) { CalcAzIndices(hData, oi, a * 2.0 * M_PI / hData->mAzCount[e], &j0, &j1, &jf); hData->mHrtds[hData->mEvOffset[e] + a] = Lerp(hData->mHrtds[0], Lerp(hData->mHrtds[j0], hData->mHrtds[j1], jf), of); } } } /* Attempt to synthesize any missing HRIRs at the bottom elevations. Right * now this just blends the lowest elevation HRIRs together and applies some * attenuation and high frequency damping. It is a simple, if inaccurate * model. */ static void SynthesizeHrirs (HrirDataT *hData) { uint oi, a, e, step, n, i, j; double lp[4], s0, s1; double of, b; uint j0, j1; double jf; if(hData->mEvStart <= 0) return; step = hData->mIrSize; oi = hData->mEvStart; n = hData->mIrPoints; for(i = 0;i < n;i++) hData->mHrirs[i] = 0.0; for(a = 0;a < hData->mAzCount[oi];a++) { j = (hData->mEvOffset[oi] + a) * step; for(i = 0;i < n;i++) hData->mHrirs[i] += hData->mHrirs[j+i] / hData->mAzCount[oi]; } for(e = 1;e < hData->mEvStart;e++) { of = ((double)e) / hData->mEvStart; b = (1.0 - of) * (3.5e-6 * hData->mIrRate); for(a = 0;a < hData->mAzCount[e];a++) { j = (hData->mEvOffset[e] + a) * step; CalcAzIndices(hData, oi, a * 2.0 * M_PI / hData->mAzCount[e], &j0, &j1, &jf); j0 *= step; j1 *= step; lp[0] = 0.0; lp[1] = 0.0; lp[2] = 0.0; lp[3] = 0.0; for(i = 0;i < n;i++) { s0 = hData->mHrirs[i]; s1 = Lerp(hData->mHrirs[j0+i], hData->mHrirs[j1+i], jf); s0 = Lerp(s0, s1, of); lp[0] = Lerp(s0, lp[0], b); lp[1] = Lerp(lp[0], lp[1], b); lp[2] = Lerp(lp[1], lp[2], b); lp[3] = Lerp(lp[2], lp[3], b); hData->mHrirs[j+i] = lp[3]; } } } b = 3.5e-6 * hData->mIrRate; lp[0] = 0.0; lp[1] = 0.0; lp[2] = 0.0; lp[3] = 0.0; for(i = 0;i < n;i++) { s0 = hData->mHrirs[i]; lp[0] = Lerp(s0, lp[0], b); lp[1] = Lerp(lp[0], lp[1], b); lp[2] = Lerp(lp[1], lp[2], b); lp[3] = Lerp(lp[2], lp[3], b); hData->mHrirs[i] = lp[3]; } hData->mEvStart = 0; } // The following routines assume a full set of HRIRs for all elevations. // Normalize the HRIR set and slightly attenuate the result. static void NormalizeHrirs (const HrirDataT *hData) { uint step, end, n, j, i; double maxLevel; step = hData->mIrSize; end = hData->mIrCount * step; n = hData->mIrPoints; maxLevel = 0.0; for(j = 0;j < end;j += step) { for(i = 0;i < n;i++) maxLevel = fmax(fabs(hData->mHrirs[j+i]), maxLevel); } maxLevel = 1.01 * maxLevel; for(j = 0;j < end;j += step) { for(i = 0;i < n;i++) hData->mHrirs[j+i] /= maxLevel; } } // Calculate the left-ear time delay using a spherical head model. static double CalcLTD(const double ev, const double az, const double rad, const double dist) { double azp, dlp, l, al; azp = asin(cos(ev) * sin(az)); dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp))); l = sqrt((dist*dist) - (rad*rad)); al = (0.5 * M_PI) + azp; if(dlp > l) dlp = l + (rad * (al - acos(rad / dist))); return (dlp / 343.3); } // Calculate the effective head-related time delays for each minimum-phase // HRIR. static void CalculateHrtds (const HeadModelT model, const double radius, HrirDataT *hData) { double minHrtd, maxHrtd; uint e, a, j; double t; minHrtd = 1000.0; maxHrtd = -1000.0; for(e = 0;e < hData->mEvCount;e++) { for(a = 0;a < hData->mAzCount[e];a++) { j = hData->mEvOffset[e] + a; if(model == HM_DATASET) t = hData->mHrtds[j] * radius / hData->mRadius; else t = CalcLTD((-90.0 + (e * 180.0 / (hData->mEvCount - 1))) * M_PI / 180.0, (a * 360.0 / hData->mAzCount [e]) * M_PI / 180.0, radius, hData->mDistance); hData->mHrtds[j] = t; maxHrtd = fmax(t, maxHrtd); minHrtd = fmin(t, minHrtd); } } maxHrtd -= minHrtd; for(j = 0;j < hData->mIrCount;j++) hData->mHrtds[j] -= minHrtd; hData->mMaxHrtd = maxHrtd; } // Process the data set definition to read and validate the data set metrics. static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData) { int hasRate = 0, hasPoints = 0, hasAzimuths = 0; int hasRadius = 0, hasDistance = 0; char ident[MAX_IDENT_LEN+1]; uint line, col; double fpVal; uint points; int intVal; while(!(hasRate && hasPoints && hasAzimuths && hasRadius && hasDistance)) { TrIndication(tr, & line, & col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; if(strcasecmp(ident, "rate") == 0) { if(hasRate) { TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) return 0; hData->mIrRate = (uint)intVal; hasRate = 1; } else if(strcasecmp(ident, "points") == 0) { if (hasPoints) { TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; TrIndication(tr, &line, &col); if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) return 0; points = (uint)intVal; if(fftSize > 0 && points > fftSize) { TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); return 0; } if(points < truncSize) { TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); return 0; } hData->mIrPoints = points; hData->mFftSize = fftSize; if(fftSize <= 0) { points = 1; while(points < (4 * hData->mIrPoints)) points <<= 1; hData->mFftSize = points; hData->mIrSize = 1 + (points / 2); } else { hData->mFftSize = fftSize; hData->mIrSize = 1 + (fftSize / 2); if(points > hData->mIrSize) hData->mIrSize = points; } hasPoints = 1; } else if(strcasecmp(ident, "azimuths") == 0) { if(hasAzimuths) { TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; hData->mIrCount = 0; hData->mEvCount = 0; hData->mEvOffset[0] = 0; for(;;) { if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) return 0; hData->mAzCount[hData->mEvCount] = (uint)intVal; hData->mIrCount += (uint)intVal; hData->mEvCount ++; if(!TrIsOperator(tr, ",")) break; if(hData->mEvCount >= MAX_EV_COUNT) { TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); return 0; } hData->mEvOffset[hData->mEvCount] = hData->mEvOffset[hData->mEvCount - 1] + ((uint)intVal); TrReadOperator(tr, ","); } if(hData->mEvCount < MIN_EV_COUNT) { TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); return 0; } hasAzimuths = 1; } else if(strcasecmp(ident, "radius") == 0) { if(hasRadius) { TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) return 0; hData->mRadius = fpVal; hasRadius = 1; } else if(strcasecmp(ident, "distance") == 0) { if(hasDistance) { TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, & fpVal)) return 0; hData->mDistance = fpVal; hasDistance = 1; } else { TrErrorAt(tr, line, col, "Expected a metric name.\n"); return 0; } TrSkipWhitespace (tr); } return 1; } // Parse an index pair from the data set definition. static int ReadIndexPair(TokenReaderT *tr, const HrirDataT *hData, uint *ei, uint *ai) { int intVal; if(!TrReadInt(tr, 0, (int)hData->mEvCount, &intVal)) return 0; *ei = (uint)intVal; if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, 0, (int)hData->mAzCount[*ei], &intVal)) return 0; *ai = (uint)intVal; return 1; } // Match the source format from a given identifier. static SourceFormatT MatchSourceFormat(const char *ident) { if(strcasecmp(ident, "wave") == 0) return SF_WAVE; if(strcasecmp(ident, "bin_le") == 0) return SF_BIN_LE; if(strcasecmp(ident, "bin_be") == 0) return SF_BIN_BE; if(strcasecmp(ident, "ascii") == 0) return SF_ASCII; return SF_NONE; } // Match the source element type from a given identifier. static ElementTypeT MatchElementType(const char *ident) { if(strcasecmp(ident, "int") == 0) return ET_INT; if(strcasecmp(ident, "fp") == 0) return ET_FP; return ET_NONE; } // Parse and validate a source reference from the data set definition. static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) { char ident[MAX_IDENT_LEN+1]; uint line, col; int intVal; TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; src->mFormat = MatchSourceFormat(ident); if(src->mFormat == SF_NONE) { TrErrorAt(tr, line, col, "Expected a source format.\n"); return 0; } if(!TrReadOperator(tr, "(")) return 0; if(src->mFormat == SF_WAVE) { if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) return 0; src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = (uint)intVal; src->mSkip = 0; } else { TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; src->mType = MatchElementType(ident); if(src->mType == ET_NONE) { TrErrorAt(tr, line, col, "Expected a source element type.\n"); return 0; } if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) { if(!TrReadOperator(tr, ",")) return 0; if(src->mType == ET_INT) { if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) return 0; src->mSize = (uint)intVal; if(!TrIsOperator(tr, ",")) src->mBits = (int)(8*src->mSize); else { TrReadOperator(tr, ","); TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(abs(intVal) < MIN_BIN_BITS || ((uint)abs(intVal)) > (8*src->mSize)) { TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); return 0; } src->mBits = intVal; } } else { TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(intVal != 4 && intVal != 8) { TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); return 0; } src->mSize = (uint)intVal; src->mBits = 0; } } else if(src->mFormat == SF_ASCII && src->mType == ET_INT) { if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) return 0; src->mSize = 0; src->mBits = intVal; } else { src->mSize = 0; src->mBits = 0; } if(!TrIsOperator(tr, ";")) src->mSkip = 0; else { TrReadOperator(tr, ";"); if(!TrReadInt (tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mSkip = (uint)intVal; } } if(!TrReadOperator(tr, ")")) return 0; if(TrIsOperator(tr, "@")) { TrReadOperator(tr, "@"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mOffset = (uint)intVal; } else src->mOffset = 0; if(!TrReadOperator(tr, ":")) return 0; if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) return 0; return 1; } // Process the list of sources in the data set definition. static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData) { uint *setCount, *setFlag; uint line, col, ei, ai; SourceRefT src; double factor; double *hrir; setCount = (uint*)calloc(hData->mEvCount, sizeof(uint)); setFlag = (uint*)calloc(hData->mIrCount, sizeof(uint)); hrir = CreateArray(hData->mIrPoints); while(TrIsOperator(tr, "[")) { TrIndication(tr, & line, & col); TrReadOperator(tr, "["); if(!ReadIndexPair(tr, hData, &ei, &ai)) goto error; if(!TrReadOperator(tr, "]")) goto error; if(setFlag[hData->mEvOffset[ei] + ai]) { TrErrorAt(tr, line, col, "Redefinition of source.\n"); goto error; } if(!TrReadOperator(tr, "=")) goto error; factor = 1.0; for(;;) { if(!ReadSourceRef(tr, &src)) goto error; if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir)) goto error; if(model == HM_DATASET) AverageHrirOnset(hrir, 1.0 / factor, ei, ai, hData); AverageHrirMagnitude(hrir, 1.0 / factor, ei, ai, hData); factor += 1.0; if(!TrIsOperator(tr, "+")) break; TrReadOperator(tr, "+"); } setFlag[hData->mEvOffset[ei] + ai] = 1; setCount[ei]++; } ei = 0; while(ei < hData->mEvCount && setCount[ei] < 1) ei++; if(ei < hData->mEvCount) { hData->mEvStart = ei; while(ei < hData->mEvCount && setCount[ei] == hData->mAzCount[ei]) ei++; if(ei >= hData->mEvCount) { if(!TrLoad(tr)) { DestroyArray(hrir); free(setFlag); free(setCount); return 1; } TrError(tr, "Errant data at end of source list.\n"); } else TrError(tr, "Missing sources for elevation index %d.\n", ei); } else TrError(tr, "Missing source references.\n"); error: DestroyArray(hrir); free(setFlag); free(setCount); return 0; } /* Parse the data set definition and process the source data, storing the * resulting data set as desired. If the input name is NULL it will read * from standard input. */ static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const OutputFormatT outFormat, const char *outName) { char rateStr[8+1], expName[MAX_PATH_LEN]; TokenReaderT tr; HrirDataT hData; double *dfa; FILE *fp; hData.mIrRate = 0; hData.mIrPoints = 0; hData.mFftSize = 0; hData.mIrSize = 0; hData.mIrCount = 0; hData.mEvCount = 0; hData.mRadius = 0; hData.mDistance = 0; fprintf(stdout, "Reading HRIR definition...\n"); if(inName != NULL) { fp = fopen(inName, "r"); if(fp == NULL) { fprintf(stderr, "Error: Could not open definition file '%s'\n", inName); return 0; } TrSetup(fp, inName, &tr); } else { fp = stdin; TrSetup(fp, "", &tr); } if(!ProcessMetrics(&tr, fftSize, truncSize, &hData)) { if(inName != NULL) fclose(fp); return 0; } hData.mHrirs = CreateArray(hData.mIrCount * hData . mIrSize); hData.mHrtds = CreateArray(hData.mIrCount); if(!ProcessSources(model, &tr, &hData)) { DestroyArray(hData.mHrtds); DestroyArray(hData.mHrirs); if(inName != NULL) fclose(fp); return 0; } if(inName != NULL) fclose(fp); if(equalize) { dfa = CreateArray(1 + (hData.mFftSize/2)); fprintf(stdout, "Calculating diffuse-field average...\n"); CalculateDiffuseFieldAverage(&hData, surface, limit, dfa); fprintf(stdout, "Performing diffuse-field equalization...\n"); DiffuseFieldEqualize(dfa, &hData); DestroyArray(dfa); } fprintf(stdout, "Performing minimum phase reconstruction...\n"); ReconstructHrirs(&hData); if(outRate != 0 && outRate != hData.mIrRate) { fprintf(stdout, "Resampling HRIRs...\n"); ResampleHrirs(outRate, &hData); } fprintf(stdout, "Truncating minimum-phase HRIRs...\n"); hData.mIrPoints = truncSize; fprintf(stdout, "Synthesizing missing elevations...\n"); if(model == HM_DATASET) SynthesizeOnsets(&hData); SynthesizeHrirs(&hData); fprintf(stdout, "Normalizing final HRIRs...\n"); NormalizeHrirs(&hData); fprintf(stdout, "Calculating impulse delays...\n"); CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData); snprintf(rateStr, 8, "%u", hData.mIrRate); StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName); switch(outFormat) { case OF_MHR: fprintf(stdout, "Creating MHR data set file...\n"); if(!StoreMhr(&hData, expName)) { DestroyArray(hData.mHrtds); DestroyArray(hData.mHrirs); return 0; } break; default: break; } DestroyArray(hData.mHrtds); DestroyArray(hData.mHrirs); return 1; } static void PrintHelp(const char *argv0, FILE *ofile) { fprintf(ofile, "Usage: %s [