/* * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * * Copyright (C) 2011-2019 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html */ #include #include #include #include #include "mysofa.h" #include "loaddef.h" // Constants for accessing the token reader's ring buffer. #define TR_RING_BITS (16) #define TR_RING_SIZE (1 << TR_RING_BITS) #define TR_RING_MASK (TR_RING_SIZE - 1) // The token reader's load interval in bytes. #define TR_LOAD_SIZE (TR_RING_SIZE >> 2) // Token reader state for parsing the data set definition. struct TokenReaderT { FILE *mFile; const char *mName; uint mLine; uint mColumn; char mRing[TR_RING_SIZE]; size_t mIn; size_t mOut; }; // The maximum identifier length used when processing the data set // definition. #define MAX_IDENT_LEN (16) // The limits for the listener's head 'radius' in the data set definition. #define MIN_RADIUS (0.05) #define MAX_RADIUS (0.15) // The maximum number of channels that can be addressed for a WAVE file // source listed in the data set definition. #define MAX_WAVE_CHANNELS (65535) // The limits to the byte size for a binary source listed in the definition // file. #define MIN_BIN_SIZE (2) #define MAX_BIN_SIZE (4) // The minimum number of significant bits for binary sources listed in the // data set definition. The maximum is calculated from the byte size. #define MIN_BIN_BITS (16) // The limits to the number of significant bits for an ASCII source listed in // the data set definition. #define MIN_ASCII_BITS (16) #define MAX_ASCII_BITS (32) // The four-character-codes for RIFF/RIFX WAVE file chunks. #define FOURCC_RIFF (0x46464952) // 'RIFF' #define FOURCC_RIFX (0x58464952) // 'RIFX' #define FOURCC_WAVE (0x45564157) // 'WAVE' #define FOURCC_FMT (0x20746D66) // 'fmt ' #define FOURCC_DATA (0x61746164) // 'data' #define FOURCC_LIST (0x5453494C) // 'LIST' #define FOURCC_WAVL (0x6C766177) // 'wavl' #define FOURCC_SLNT (0x746E6C73) // 'slnt' // The supported wave formats. #define WAVE_FORMAT_PCM (0x0001) #define WAVE_FORMAT_IEEE_FLOAT (0x0003) #define WAVE_FORMAT_EXTENSIBLE (0xFFFE) enum ByteOrderT { BO_NONE, BO_LITTLE, BO_BIG }; // Source format for the references listed in the data set definition. enum SourceFormatT { SF_NONE, SF_ASCII, // ASCII text file. SF_BIN_LE, // Little-endian binary file. SF_BIN_BE, // Big-endian binary file. SF_WAVE, // RIFF/RIFX WAVE file. SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file. }; // Element types for the references listed in the data set definition. enum ElementTypeT { ET_NONE, ET_INT, // Integer elements. ET_FP // Floating-point elements. }; // Source reference state used when loading sources. struct SourceRefT { SourceFormatT mFormat; ElementTypeT mType; uint mSize; int mBits; uint mChannel; double mAzimuth; double mElevation; double mRadius; uint mSkip; uint mOffset; char mPath[MAX_PATH_LEN+1]; }; /* Whitespace is not significant. It can process tokens as identifiers, numbers * (integer and floating-point), strings, and operators. Strings must be * encapsulated by double-quotes and cannot span multiple lines. */ // Setup the reader on the given file. The filename can be NULL if no error // output is desired. static void TrSetup(FILE *fp, const char *startbytes, size_t startbytecount, const char *filename, TokenReaderT *tr) { const char *name = nullptr; if(filename) { const char *slash = strrchr(filename, '/'); if(slash) { const char *bslash = strrchr(slash+1, '\\'); if(bslash) name = bslash+1; else name = slash+1; } else { const char *bslash = strrchr(filename, '\\'); if(bslash) name = bslash+1; else name = filename; } } tr->mFile = fp; tr->mName = name; tr->mLine = 1; tr->mColumn = 1; tr->mIn = 0; tr->mOut = 0; if(startbytecount > 0) { memcpy(tr->mRing, startbytes, startbytecount); tr->mIn += startbytecount; } } // Prime the reader's ring buffer, and return a result indicating that there // is text to process. static int TrLoad(TokenReaderT *tr) { size_t toLoad, in, count; toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) { // Load TR_LOAD_SIZE (or less if at the end of the file) per read. toLoad = TR_LOAD_SIZE; in = tr->mIn&TR_RING_MASK; count = TR_RING_SIZE - in; if(count < toLoad) { tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); } else tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); if(tr->mOut >= TR_RING_SIZE) { tr->mOut -= TR_RING_SIZE; tr->mIn -= TR_RING_SIZE; } } if(tr->mIn > tr->mOut) return 1; return 0; } // Error display routine. Only displays when the base name is not NULL. static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) { if(!tr->mName) return; fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column); vfprintf(stderr, format, argPtr); } // Used to display an error at a saved line/column. static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) { va_list argPtr; va_start(argPtr, format); TrErrorVA(tr, line, column, format, argPtr); va_end(argPtr); } // Used to display an error at the current line/column. static void TrError(const TokenReaderT *tr, const char *format, ...) { va_list argPtr; va_start(argPtr, format); TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); va_end(argPtr); } // Skips to the next line. static void TrSkipLine(TokenReaderT *tr) { char ch; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; break; } tr->mColumn ++; } } // Skips to the next token. static int TrSkipWhitespace(TokenReaderT *tr) { while(TrLoad(tr)) { char ch{tr->mRing[tr->mOut&TR_RING_MASK]}; if(isspace(ch)) { tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; } else tr->mColumn++; } else if(ch == '#') TrSkipLine(tr); else return 1; } return 0; } // Get the line and/or column of the next token (or the end of input). static void TrIndication(TokenReaderT *tr, uint *line, uint *column) { TrSkipWhitespace(tr); if(line) *line = tr->mLine; if(column) *column = tr->mColumn; } // Checks to see if a token is (likely to be) an identifier. It does not // display any errors and will not proceed to the next token. static int TrIsIdent(TokenReaderT *tr) { if(!TrSkipWhitespace(tr)) return 0; char ch{tr->mRing[tr->mOut&TR_RING_MASK]}; return ch == '_' || isalpha(ch); } // Checks to see if a token is the given operator. It does not display any // errors and will not proceed to the next token. static int TrIsOperator(TokenReaderT *tr, const char *op) { size_t out, len; char ch; if(!TrSkipWhitespace(tr)) return 0; out = tr->mOut; len = 0; while(op[len] != '\0' && out < tr->mIn) { ch = tr->mRing[out&TR_RING_MASK]; if(ch != op[len]) break; len++; out++; } if(op[len] == '\0') return 1; return 0; } /* The TrRead*() routines obtain the value of a matching token type. They * display type, form, and boundary errors and will proceed to the next * token. */ // Reads and validates an identifier token. static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '_' || isalpha(ch)) { len = 0; do { if(len < maxLen) ident[len] = ch; len++; tr->mOut++; if(!TrLoad(tr)) break; ch = tr->mRing[tr->mOut&TR_RING_MASK]; } while(ch == '_' || isdigit(ch) || isalpha(ch)); tr->mColumn += len; if(len < maxLen) { ident[len] = '\0'; return 1; } TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); return 0; } } TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); return 0; } // Reads and validates (including bounds) an integer token. static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) { uint col, digis, len; char ch, temp[64+1]; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } digis = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Integer is too long."); return 0; } temp[len] = '\0'; *value = strtol(temp, nullptr, 10); if(*value < loBound || *value > hiBound) { TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); return 0; } return 1; } } TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); return 0; } // Reads and validates (including bounds) a float token. static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) { uint col, digis, len; char ch, temp[64+1]; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } digis = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(ch == '.') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(digis > 0) { if(ch == 'E' || ch == 'e') { if(len < 64) temp[len] = ch; len++; digis = 0; tr->mOut++; if(ch == '+' || ch == '-') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Float is too long."); return 0; } temp[len] = '\0'; *value = strtod(temp, nullptr); if(*value < loBound || *value > hiBound) { TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); return 0; } return 1; } } else tr->mColumn += len; } TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); return 0; } // Reads and validates a string token. static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch == '\"') { tr->mOut++; len = 0; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; tr->mOut++; if(ch == '\"') break; if(ch == '\n') { TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n"); return 0; } if(len < maxLen) text[len] = ch; len++; } if(ch != '\"') { tr->mColumn += 1 + len; TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); return 0; } tr->mColumn += 2 + len; if(len > maxLen) { TrErrorAt(tr, tr->mLine, col, "String is too long.\n"); return 0; } text[len] = '\0'; return 1; } } TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); return 0; } // Reads and validates the given operator. static int TrReadOperator(TokenReaderT *tr, const char *op) { uint col, len; char ch; col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; len = 0; while(op[len] != '\0' && TrLoad(tr)) { ch = tr->mRing[tr->mOut&TR_RING_MASK]; if(ch != op[len]) break; len++; tr->mOut++; } tr->mColumn += len; if(op[len] == '\0') return 1; } TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); return 0; } /************************* *** File source input *** *************************/ // Read a binary value of the specified byte order and byte size from a file, // storing it as a 32-bit unsigned integer. static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out) { uint8_t in[4]; uint32_t accum; uint i; if(fread(in, 1, bytes, fp) != bytes) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); return 0; } accum = 0; switch(order) { case BO_LITTLE: for(i = 0;i < bytes;i++) accum = (accum<<8) | in[bytes - i - 1]; break; case BO_BIG: for(i = 0;i < bytes;i++) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } // Read a binary value of the specified byte order from a file, storing it as // a 64-bit unsigned integer. static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out) { uint8_t in[8]; uint64_t accum; uint i; if(fread(in, 1, 8, fp) != 8) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); return 0; } accum = 0ULL; switch(order) { case BO_LITTLE: for(i = 0;i < 8;i++) accum = (accum<<8) | in[8 - i - 1]; break; case BO_BIG: for(i = 0;i < 8;i++) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } /* Read a binary value of the specified type, byte order, and byte size from * a file, converting it to a double. For integer types, the significant * bits are used to normalize the result. The sign of bits determines * whether they are padded toward the MSB (negative) or LSB (positive). * Floating-point types are not normalized. */ static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) { union { uint32_t ui; int32_t i; float f; } v4; union { uint64_t ui; double f; } v8; *out = 0.0; if(bytes > 4) { if(!ReadBin8(fp, filename, order, &v8.ui)) return 0; if(type == ET_FP) *out = v8.f; } else { if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) return 0; if(type == ET_FP) *out = v4.f; else { if(bits > 0) v4.ui >>= (8*bytes) - (static_cast(bits)); else v4.ui &= (0xFFFFFFFF >> (32+bits)); if(v4.ui&static_cast(1<<(std::abs(bits)-1))) v4.ui |= (0xFFFFFFFF << std::abs(bits)); *out = v4.i / static_cast(1<<(std::abs(bits)-1)); } } return 1; } /* Read an ascii value of the specified type from a file, converting it to a * double. For integer types, the significant bits are used to normalize the * result. The sign of the bits should always be positive. This also skips * up to one separator character before the element itself. */ static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) { if(TrIsOperator(tr, ",")) TrReadOperator(tr, ","); else if(TrIsOperator(tr, ":")) TrReadOperator(tr, ":"); else if(TrIsOperator(tr, ";")) TrReadOperator(tr, ";"); else if(TrIsOperator(tr, "|")) TrReadOperator(tr, "|"); if(type == ET_FP) { if(!TrReadFloat(tr, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), out)) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); return 0; } } else { int v; if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); return 0; } *out = v / static_cast((1<<(bits-1))-1); } return 1; } // Read the RIFF/RIFX WAVE format chunk from a file, validating it against // the source parameters and data set metrics. static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) { uint32_t fourCC, chunkSize; uint32_t format, channels, rate, dummy, block, size, bits; chunkSize = 0; do { if(chunkSize > 0) fseek(fp, static_cast(chunkSize), SEEK_CUR); if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) return 0; } while(fourCC != FOURCC_FMT); if(!ReadBin4(fp, src->mPath, order, 2, &format) || !ReadBin4(fp, src->mPath, order, 2, &channels) || !ReadBin4(fp, src->mPath, order, 4, &rate) || !ReadBin4(fp, src->mPath, order, 4, &dummy) || !ReadBin4(fp, src->mPath, order, 2, &block)) return 0; block /= channels; if(chunkSize > 14) { if(!ReadBin4(fp, src->mPath, order, 2, &size)) return 0; size /= 8; if(block > size) size = block; } else size = block; if(format == WAVE_FORMAT_EXTENSIBLE) { fseek(fp, 2, SEEK_CUR); if(!ReadBin4(fp, src->mPath, order, 2, &bits)) return 0; if(bits == 0) bits = 8 * size; fseek(fp, 4, SEEK_CUR); if(!ReadBin4(fp, src->mPath, order, 2, &format)) return 0; fseek(fp, static_cast(chunkSize - 26), SEEK_CUR); } else { bits = 8 * size; if(chunkSize > 14) fseek(fp, static_cast(chunkSize - 16), SEEK_CUR); else fseek(fp, static_cast(chunkSize - 14), SEEK_CUR); } if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) { fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath); return 0; } if(src->mChannel >= channels) { fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath); return 0; } if(rate != hrirRate) { fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); return 0; } if(format == WAVE_FORMAT_PCM) { if(size < 2 || size > 4) { fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath); return 0; } if(bits < 16 || bits > (8*size)) { fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath); return 0; } src->mType = ET_INT; } else { if(size != 4 && size != 8) { fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath); return 0; } src->mType = ET_FP; } src->mSize = size; src->mBits = static_cast(bits); src->mSkip = channels; return 1; } // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { int pre, post, skip; uint i; pre = static_cast(src->mSize * src->mChannel); post = static_cast(src->mSize * (src->mSkip - src->mChannel - 1)); skip = 0; for(i = 0;i < n;i++) { skip += pre; if(skip > 0) fseek(fp, skip, SEEK_CUR); if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; skip = post; } if(skip > 0) fseek(fp, skip, SEEK_CUR); return 1; } // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to // doubles. static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { uint32_t fourCC, chunkSize, listSize, count; uint block, skip, offset, i; double lastSample; for(;;) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) return 0; if(fourCC == FOURCC_DATA) { block = src->mSize * src->mSkip; count = chunkSize / block; if(count < (src->mOffset + n)) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath); return 0; } fseek(fp, static_cast(src->mOffset * block), SEEK_CUR); if(!ReadWaveData(fp, src, order, n, &hrir[0])) return 0; return 1; } else if(fourCC == FOURCC_LIST) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; chunkSize -= 4; if(fourCC == FOURCC_WAVL) break; } if(chunkSize > 0) fseek(fp, static_cast(chunkSize), SEEK_CUR); } listSize = chunkSize; block = src->mSize * src->mSkip; skip = src->mOffset; offset = 0; lastSample = 0.0; while(offset < n && listSize > 8) { if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) return 0; listSize -= 8 + chunkSize; if(fourCC == FOURCC_DATA) { count = chunkSize / block; if(count > skip) { fseek(fp, static_cast(skip * block), SEEK_CUR); chunkSize -= skip * block; count -= skip; skip = 0; if(count > (n - offset)) count = n - offset; if(!ReadWaveData(fp, src, order, count, &hrir[offset])) return 0; chunkSize -= count * block; offset += count; lastSample = hrir[offset - 1]; } else { skip -= count; count = 0; } } else if(fourCC == FOURCC_SLNT) { if(!ReadBin4(fp, src->mPath, order, 4, &count)) return 0; chunkSize -= 4; if(count > skip) { count -= skip; skip = 0; if(count > (n - offset)) count = n - offset; for(i = 0; i < count; i ++) hrir[offset + i] = lastSample; offset += count; } else { skip -= count; count = 0; } } if(chunkSize > 0) fseek(fp, static_cast(chunkSize), SEEK_CUR); } if(offset < n) { fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath); return 0; } return 1; } // Load a source HRIR from an ASCII text file containing a list of elements // separated by whitespace or common list operators (',', ';', ':', '|'). static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) { TokenReaderT tr; uint i, j; double dummy; TrSetup(fp, nullptr, 0, nullptr, &tr); for(i = 0;i < src->mOffset;i++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &dummy)) return 0; } for(i = 0;i < n;i++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &hrir[i])) return 0; for(j = 0;j < src->mSkip;j++) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &dummy)) return 0; } } return 1; } // Load a source HRIR from a binary file. static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) { uint i; fseek(fp, static_cast(src->mOffset), SEEK_SET); for(i = 0;i < n;i++) { if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; if(src->mSkip > 0) fseek(fp, static_cast(src->mSkip), SEEK_CUR); } return 1; } // Load a source HRIR from a RIFF/RIFX WAVE file. static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) { uint32_t fourCC, dummy; ByteOrderT order; if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) return 0; if(fourCC == FOURCC_RIFF) order = BO_LITTLE; else if(fourCC == FOURCC_RIFX) order = BO_BIG; else { fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); return 0; } if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; if(fourCC != FOURCC_WAVE) { fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); return 0; } if(!ReadWaveFormat(fp, order, hrirRate, src)) return 0; if(!ReadWaveList(fp, src, order, n, hrir)) return 0; return 1; } // Load a Spatially Oriented Format for Accoustics (SOFA) file. static MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n) { struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)}; if(sofa) return sofa; sofa = static_cast(calloc(1, sizeof(*sofa))); if(sofa == nullptr) { fprintf(stderr, "\nError: Out of memory.\n"); return nullptr; } sofa->lookup = nullptr; sofa->neighborhood = nullptr; int err; sofa->hrtf = mysofa_load(src->mPath, &err); if(!sofa->hrtf) { mysofa_close(sofa); fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath); return nullptr; } err = mysofa_check(sofa->hrtf); if(err != MYSOFA_OK) /* NOTE: Some valid SOFA files are failing this check. { mysofa_close(sofa); fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath); return nullptr; }*/ fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath); if((src->mOffset + n) > sofa->hrtf->N) { mysofa_close(sofa); fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath); return nullptr; } if(src->mChannel >= sofa->hrtf->R) { mysofa_close(sofa); fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath); return nullptr; } mysofa_tocartesian(sofa->hrtf); sofa->lookup = mysofa_lookup_init(sofa->hrtf); if(sofa->lookup == nullptr) { mysofa_close(sofa); fprintf(stderr, "\nError: Out of memory.\n"); return nullptr; } return mysofa_cache_store(sofa, src->mPath, (float)hrirRate); } // Copies the HRIR data from a particular SOFA measurement. static void ExtractSofaHrir(const MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir) { for(uint i{0u};i < n;i++) hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i]; } // Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA) // file. static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) { struct MYSOFA_EASY *sofa; float target[3]; int nearest; float *coords; sofa = LoadSofaFile(src, hrirRate, n); if(sofa == nullptr) return 0; /* NOTE: At some point it may be benficial or necessary to consider the various coordinate systems, listener/source orientations, and direciontal vectors defined in the SOFA file. */ target[0] = src->mAzimuth; target[1] = src->mElevation; target[2] = src->mRadius; mysofa_s2c(target); nearest = mysofa_lookup(sofa->lookup, target); if(nearest < 0) { fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath); return 0; } coords = &sofa->hrtf->SourcePosition.values[3 * nearest]; if(std::abs(coords[0] - target[0]) > 0.001 || std::abs(coords[1] - target[1]) > 0.001 || std::abs(coords[2] - target[2]) > 0.001) { fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath); target[0] = coords[0]; target[1] = coords[1]; target[2] = coords[2]; mysofa_c2s(target); fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]); return 0; } ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir); return 1; } // Load a source HRIR from a supported file type. static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) { FILE *fp{nullptr}; if(src->mFormat != SF_SOFA) { if(src->mFormat == SF_ASCII) fp = fopen(src->mPath, "r"); else fp = fopen(src->mPath, "rb"); if(fp == nullptr) { fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath); return 0; } } int result; switch(src->mFormat) { case SF_ASCII: result = LoadAsciiSource(fp, src, n, hrir); break; case SF_BIN_LE: result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); break; case SF_BIN_BE: result = LoadBinarySource(fp, src, BO_BIG, n, hrir); break; case SF_WAVE: result = LoadWaveSource(fp, src, hrirRate, n, hrir); break; case SF_SOFA: result = LoadSofaSource(src, hrirRate, n, hrir); break; default: result = 0; } if(fp) fclose(fp); return result; } // Match the channel type from a given identifier. static ChannelTypeT MatchChannelType(const char *ident) { if(strcasecmp(ident, "mono") == 0) return CT_MONO; if(strcasecmp(ident, "stereo") == 0) return CT_STEREO; return CT_NONE; } // Process the data set definition to read and validate the data set metrics. static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData) { int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; int hasDistance = 0, hasAzimuths = 0; char ident[MAX_IDENT_LEN+1]; uint line, col; double fpVal; uint points; int intVal; double distances[MAX_FD_COUNT]; uint fdCount = 0; uint evCounts[MAX_FD_COUNT]; std::vector azCounts(MAX_FD_COUNT * MAX_EV_COUNT); TrIndication(tr, &line, &col); while(TrIsIdent(tr)) { TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; if(strcasecmp(ident, "rate") == 0) { if(hasRate) { TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) return 0; hData->mIrRate = static_cast(intVal); hasRate = 1; } else if(strcasecmp(ident, "type") == 0) { char type[MAX_IDENT_LEN+1]; if(hasType) { TrErrorAt(tr, line, col, "Redefinition of 'type'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) return 0; hData->mChannelType = MatchChannelType(type); if(hData->mChannelType == CT_NONE) { TrErrorAt(tr, line, col, "Expected a channel type.\n"); return 0; } else if(hData->mChannelType == CT_STEREO) { if(chanMode == CM_ForceMono) hData->mChannelType = CT_MONO; } hasType = 1; } else if(strcasecmp(ident, "points") == 0) { if(hasPoints) { TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; TrIndication(tr, &line, &col); if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) return 0; points = static_cast(intVal); if(fftSize > 0 && points > fftSize) { TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); return 0; } if(points < truncSize) { TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); return 0; } hData->mIrPoints = points; hData->mFftSize = fftSize; hData->mIrSize = 1 + (fftSize / 2); if(points > hData->mIrSize) hData->mIrSize = points; hasPoints = 1; } else if(strcasecmp(ident, "radius") == 0) { if(hasRadius) { TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) return 0; hData->mRadius = fpVal; hasRadius = 1; } else if(strcasecmp(ident, "distance") == 0) { uint count = 0; if(hasDistance) { TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; for(;;) { if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) return 0; if(count > 0 && fpVal <= distances[count - 1]) { TrError(tr, "Distances are not ascending.\n"); return 0; } distances[count++] = fpVal; if(!TrIsOperator(tr, ",")) break; if(count >= MAX_FD_COUNT) { TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT); return 0; } TrReadOperator(tr, ","); } if(fdCount != 0 && count != fdCount) { TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); return 0; } fdCount = count; hasDistance = 1; } else if(strcasecmp(ident, "azimuths") == 0) { uint count = 0; if(hasAzimuths) { TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; evCounts[0] = 0; for(;;) { if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) return 0; azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast(intVal); if(TrIsOperator(tr, ",")) { if(evCounts[count] >= MAX_EV_COUNT) { TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); return 0; } TrReadOperator(tr, ","); } else { if(evCounts[count] < MIN_EV_COUNT) { TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); return 0; } if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1) { TrError(tr, "Poles are not singular for field %d.\n", count - 1); return 0; } count++; if(!TrIsOperator(tr, ";")) break; if(count >= MAX_FD_COUNT) { TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT); return 0; } evCounts[count] = 0; TrReadOperator(tr, ";"); } } if(fdCount != 0 && count != fdCount) { TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); return 0; } fdCount = count; hasAzimuths = 1; } else { TrErrorAt(tr, line, col, "Expected a metric name.\n"); return 0; } TrSkipWhitespace(tr); } if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) { TrErrorAt(tr, line, col, "Expected a metric name.\n"); return 0; } if(distances[0] < hData->mRadius) { TrError(tr, "Distance cannot start below head radius.\n"); return 0; } if(hData->mChannelType == CT_NONE) hData->mChannelType = CT_MONO; if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData)) { fprintf(stderr, "Error: Out of memory.\n"); exit(-1); } return 1; } // Parse an index triplet from the data set definition. static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai) { int intVal; if(hData->mFdCount > 1) { if(!TrReadInt(tr, 0, static_cast(hData->mFdCount) - 1, &intVal)) return 0; *fi = static_cast(intVal); if(!TrReadOperator(tr, ",")) return 0; } else { *fi = 0; } if(!TrReadInt(tr, 0, static_cast(hData->mFds[*fi].mEvCount) - 1, &intVal)) return 0; *ei = static_cast(intVal); if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, 0, static_cast(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal)) return 0; *ai = static_cast(intVal); return 1; } // Match the source format from a given identifier. static SourceFormatT MatchSourceFormat(const char *ident) { if(strcasecmp(ident, "ascii") == 0) return SF_ASCII; if(strcasecmp(ident, "bin_le") == 0) return SF_BIN_LE; if(strcasecmp(ident, "bin_be") == 0) return SF_BIN_BE; if(strcasecmp(ident, "wave") == 0) return SF_WAVE; if(strcasecmp(ident, "sofa") == 0) return SF_SOFA; return SF_NONE; } // Match the source element type from a given identifier. static ElementTypeT MatchElementType(const char *ident) { if(strcasecmp(ident, "int") == 0) return ET_INT; if(strcasecmp(ident, "fp") == 0) return ET_FP; return ET_NONE; } // Parse and validate a source reference from the data set definition. static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) { char ident[MAX_IDENT_LEN+1]; uint line, col; double fpVal; int intVal; TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; src->mFormat = MatchSourceFormat(ident); if(src->mFormat == SF_NONE) { TrErrorAt(tr, line, col, "Expected a source format.\n"); return 0; } if(!TrReadOperator(tr, "(")) return 0; if(src->mFormat == SF_SOFA) { if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) return 0; src->mRadius = fpVal; if(!TrReadOperator(tr, ",")) return 0; if(!TrReadFloat(tr, -90.0, 90.0, &fpVal)) return 0; src->mElevation = fpVal; if(!TrReadOperator(tr, ",")) return 0; if(!TrReadFloat(tr, -360.0, 360.0, &fpVal)) return 0; src->mAzimuth = fpVal; if(!TrReadOperator(tr, ":")) return 0; if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) return 0; src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = (uint)intVal; src->mSkip = 0; } else if(src->mFormat == SF_WAVE) { if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) return 0; src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = static_cast(intVal); src->mSkip = 0; } else { TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; src->mType = MatchElementType(ident); if(src->mType == ET_NONE) { TrErrorAt(tr, line, col, "Expected a source element type.\n"); return 0; } if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) { if(!TrReadOperator(tr, ",")) return 0; if(src->mType == ET_INT) { if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) return 0; src->mSize = static_cast(intVal); if(!TrIsOperator(tr, ",")) src->mBits = static_cast(8*src->mSize); else { TrReadOperator(tr, ","); TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(std::abs(intVal) < MIN_BIN_BITS || static_cast(std::abs(intVal)) > (8*src->mSize)) { TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); return 0; } src->mBits = intVal; } } else { TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(intVal != 4 && intVal != 8) { TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); return 0; } src->mSize = static_cast(intVal); src->mBits = 0; } } else if(src->mFormat == SF_ASCII && src->mType == ET_INT) { if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) return 0; src->mSize = 0; src->mBits = intVal; } else { src->mSize = 0; src->mBits = 0; } if(!TrIsOperator(tr, ";")) src->mSkip = 0; else { TrReadOperator(tr, ";"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mSkip = static_cast(intVal); } } if(!TrReadOperator(tr, ")")) return 0; if(TrIsOperator(tr, "@")) { TrReadOperator(tr, "@"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mOffset = static_cast(intVal); } else src->mOffset = 0; if(!TrReadOperator(tr, ":")) return 0; if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) return 0; return 1; } // Parse and validate a SOFA source reference from the data set definition. static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src) { char ident[MAX_IDENT_LEN+1]; uint line, col; int intVal; TrIndication(tr, &line, &col); if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; src->mFormat = MatchSourceFormat(ident); if(src->mFormat != SF_SOFA) { TrErrorAt(tr, line, col, "Expected the SOFA source format.\n"); return 0; } src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = 0; src->mSkip = 0; if(TrIsOperator(tr, "@")) { TrReadOperator(tr, "@"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mOffset = (uint)intVal; } else src->mOffset = 0; if(!TrReadOperator(tr, ":")) return 0; if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) return 0; return 1; } // Match the target ear (index) from a given identifier. static int MatchTargetEar(const char *ident) { if(strcasecmp(ident, "left") == 0) return 0; if(strcasecmp(ident, "right") == 0) return 1; return -1; } // Calculate the onset time of an HRIR and average it with any existing // timing for its field, elevation, azimuth, and ear. static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset) { std::vector upsampled(10 * n); { ResamplerT rs; ResamplerSetup(&rs, rate, 10 * rate); ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data()); } double mag{0.0}; for(uint i{0u};i < 10*n;i++) mag = std::max(std::abs(upsampled[i]), mag); mag *= 0.15; uint i{0u}; for(;i < 10*n;i++) { if(std::abs(upsampled[i]) >= mag) break; } return Lerp(onset, static_cast(i) / (10*rate), f); } // Calculate the magnitude response of an HRIR and average it with any // existing responses for its field, elevation, azimuth, and ear. static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag) { uint m = 1 + (n / 2), i; std::vector h(n); std::vector r(n); for(i = 0;i < points;i++) h[i] = complex_d{hrir[i], 0.0}; for(;i < n;i++) h[i] = complex_d{0.0, 0.0}; FftForward(n, h.data()); MagnitudeResponse(n, h.data(), r.data()); for(i = 0;i < m;i++) mag[i] = Lerp(mag[i], r[i], f); } // Process the list of sources in the data set definition. static int ProcessSources(TokenReaderT *tr, HrirDataT *hData) { uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize); double *hrirs = hData->mHrirsBase.data(); std::vector hrir(hData->mIrPoints); uint line, col, fi, ei, ai, ti; int count; printf("Loading sources..."); fflush(stdout); count = 0; while(TrIsOperator(tr, "[")) { double factor[2]{ 1.0, 1.0 }; TrIndication(tr, &line, &col); TrReadOperator(tr, "["); if(TrIsOperator(tr, "*")) { SourceRefT src; struct MYSOFA_EASY *sofa; uint si; TrReadOperator(tr, "*"); if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "=")) return 0; TrIndication(tr, &line, &col); if(!ReadSofaRef(tr, &src)) return 0; if(hData->mChannelType == CT_STEREO) { char type[MAX_IDENT_LEN+1]; ChannelTypeT channelType; if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) return 0; channelType = MatchChannelType(type); switch(channelType) { case CT_NONE: TrErrorAt(tr, line, col, "Expected a channel type.\n"); return 0; case CT_MONO: src.mChannel = 0; break; case CT_STEREO: src.mChannel = 1; break; } } else { char type[MAX_IDENT_LEN+1]; ChannelTypeT channelType; if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) return 0; channelType = MatchChannelType(type); if(channelType != CT_MONO) { TrErrorAt(tr, line, col, "Expected a mono channel type.\n"); return 0; } src.mChannel = 0; } sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints); if(!sofa) return 0; for(si = 0;si < sofa->hrtf->M;si++) { printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M); fflush(stdout); float aer[3] = { sofa->hrtf->SourcePosition.values[3*si], sofa->hrtf->SourcePosition.values[3*si + 1], sofa->hrtf->SourcePosition.values[3*si + 2] }; mysofa_c2s(aer); if(std::fabs(aer[1]) >= 89.999f) aer[0] = 0.0f; else aer[0] = std::fmod(360.0f - aer[0], 360.0f); for(fi = 0;fi < hData->mFdCount;fi++) { double delta = aer[2] - hData->mFds[fi].mDistance; if(std::abs(delta) < 0.001) break; } if(fi >= hData->mFdCount) continue; double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0}; ei = (int)std::round(ef); ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1); if(std::abs(ef) >= 0.1) continue; double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f}; ai = (int)std::round(af); af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount; ai = ai % hData->mFds[fi].mEvs[ei].mAzCount; if(std::abs(af) >= 0.1) continue; HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd->mIrs[0] != nullptr) { TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai); return 0; } ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data()); azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex]; azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]); AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]); if(src.mChannel == 1) { ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data()); azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)]; azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]); AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]); } // TODO: Since some SOFA files contain minimum phase HRIRs, // it would be beneficial to check for per-measurement delays // (when available) to reconstruct the HRTDs. } continue; } if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) return 0; if(!TrReadOperator(tr, "]")) return 0; HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd->mIrs[0] != nullptr) { TrErrorAt(tr, line, col, "Redefinition of source.\n"); return 0; } if(!TrReadOperator(tr, "=")) return 0; for(;;) { SourceRefT src; uint ti = 0; if(!ReadSourceRef(tr, &src)) return 0; // TODO: Would be nice to display 'x of y files', but that would // require preparing the source refs first to get a total count // before loading them. ++count; printf("\rLoading sources... %d file%s", count, (count==1)?"":"s"); fflush(stdout); if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data())) return 0; if(hData->mChannelType == CT_STEREO) { char ident[MAX_IDENT_LEN+1]; if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) return 0; ti = MatchTargetEar(ident); if(static_cast(ti) < 0) { TrErrorAt(tr, line, col, "Expected a target ear.\n"); return 0; } } azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]); AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]); factor[ti] += 1.0; if(!TrIsOperator(tr, "+")) break; TrReadOperator(tr, "+"); } if(hData->mChannelType == CT_STEREO) { if(azd->mIrs[0] == nullptr) { TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n"); return 0; } else if(azd->mIrs[1] == nullptr) { TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n"); return 0; } } } printf("\n"); for(fi = 0;fi < hData->mFdCount;fi++) { for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd->mIrs[0] != nullptr) break; } if(ai < hData->mFds[fi].mEvs[ei].mAzCount) break; } if(ei >= hData->mFds[fi].mEvCount) { TrError(tr, "Missing source references [ %d, *, * ].\n", fi); return 0; } hData->mFds[fi].mEvStart = ei; for(;ei < hData->mFds[fi].mEvCount;ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd->mIrs[0] == nullptr) { TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); return 0; } } } } for(ti = 0;ti < channels;ti++) { for(fi = 0;fi < hData->mFdCount;fi++) { for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; } } } } if(!TrLoad(tr)) { mysofa_cache_release_all(); return 1; } TrError(tr, "Errant data at end of source list.\n"); mysofa_cache_release_all(); return 0; } bool LoadDefInput(FILE *fp, const char *startbytes, size_t startbytecount, const char *filename, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData) { TokenReaderT tr; TrSetup(fp, startbytes, startbytecount, filename, &tr); if(!ProcessMetrics(&tr, fftSize, truncSize, chanMode, hData)) { if(fp != stdin) fclose(fp); return false; } if(!ProcessSources(&tr, hData)) { if(fp != stdin) fclose(fp); return false; } return true; }