/* * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * * Copyright (C) 2018-2019 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html */ #include "loadsofa.h" #include #include #include #include #include #include #include #include #include #include #include "makemhr.h" #include "mysofa.h" using namespace std::placeholders; using double3 = std::array; static const char *SofaErrorStr(int err) { switch(err) { case MYSOFA_OK: return "OK"; case MYSOFA_INVALID_FORMAT: return "Invalid format"; case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; case MYSOFA_INTERNAL_ERROR: return "Internal error"; case MYSOFA_NO_MEMORY: return "Out of memory"; case MYSOFA_READ_ERROR: return "Read error"; } return "Unknown"; } /* Produces a sorted array of unique elements from a particular axis of the * triplets array. The filters are used to focus on particular coordinates * of other axes as necessary. The epsilons are used to constrain the * equality of unique elements. */ static std::vector GetUniquelySortedElems(const std::vector &aers, const uint axis, const double *const (&filters)[3], const double (&epsilons)[3]) { std::vector elems; for(const double3 &aer : aers) { const double elem{aer[axis]}; uint j; for(j = 0;j < 3;j++) { if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) break; } if(j < 3) continue; auto iter = elems.begin(); for(;iter != elems.end();++iter) { const double delta{elem - *iter}; if(delta > epsilons[axis]) continue; if(delta >= -epsilons[axis]) break; iter = elems.emplace(iter, elem); break; } if(iter == elems.end()) elems.emplace_back(elem); } return elems; } /* Given a list of azimuths, this will produce the smallest step size that can * uniformly cover the list. Ideally this will be over half, but in degenerate * cases this can fall to a minimum of 5 (the lower limit). */ static double GetUniformAzimStep(const double epsilon, const std::vector &elems) { if(elems.size() < 5) return 0.0; /* Get the maximum count possible, given the first two elements. It would * be impossible to have more than this since the first element must be * included. */ uint count{static_cast(std::ceil(360.0 / (elems[1]-elems[0])))}; count = std::min(count, uint{MAX_AZ_COUNT}); for(;count >= 5;--count) { /* Given the stepping value for this number of elements, check each * multiple to ensure there's a matching element. */ const double step{360.0 / count}; bool good{true}; size_t idx{1u}; for(uint mult{1u};mult < count && good;++mult) { const double target{step*mult + elems[0]}; while(idx < elems.size() && target-elems[idx] > epsilon) ++idx; good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); } if(good) return step; } return 0.0; } /* Given a list of elevations, this will produce the smallest step size that * can uniformly cover the list. Ideally this will be over half, but in * degenerate cases this can fall to a minimum of 5 (the lower limit). */ static double GetUniformElevStep(const double epsilon, std::vector &elems) { if(elems.size() < 5) return 0.0; /* Reverse the elevations so it increments starting with -90 (flipped from * +90). This makes it easier to work out a proper stepping value. */ std::reverse(elems.begin(), elems.end()); for(auto &v : elems) v *= -1.0; uint count{static_cast(std::ceil(180.0 / (elems[1]-elems[0])))}; count = std::min(count, uint{MAX_EV_COUNT-1u}); double ret{0.0}; for(;count >= 5;--count) { const double step{180.0 / count}; bool good{true}; size_t idx{1u}; /* Elevations don't need to match all multiples if there's not enough * elements to check. Missing elevations can be synthesized. */ for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) { const double target{step*mult + elems[0]}; while(idx < elems.size() && target-elems[idx] > epsilon) ++idx; good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); } if(good) { ret = step; break; } } /* Re-reverse the elevations to restore the correct order. */ for(auto &v : elems) v *= -1.0; std::reverse(elems.begin(), elems.end()); return ret; } /* Attempts to produce a compatible layout. Most data sets tend to be * uniform and have the same major axis as used by OpenAL Soft's HRTF model. * This will remove outliers and produce a maximally dense layout when * possible. Those sets that contain purely random measurements or use * different major axes will fail. */ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData) { fprintf(stdout, "Detecting compatible layout...\n"); auto aers = std::vector(m, double3{}); for(uint i{0u};i < m;++i) { float aer[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; mysofa_c2s(&aer[0]); aers[i][0] = aer[0]; aers[i][1] = aer[1]; aers[i][2] = aer[2]; } auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); if(radii.size() > MAX_FD_COUNT) { fprintf(stdout, "Incompatible layout (inumerable radii).\n"); return false; } double distances[MAX_FD_COUNT]{}; uint evCounts[MAX_FD_COUNT]{}; auto azCounts = std::vector(MAX_FD_COUNT*MAX_EV_COUNT, 0u); auto dist_end = std::copy_if(radii.cbegin(), radii.cend(), std::begin(distances), std::bind(std::greater_equal{}, _1, hData->mRadius)); auto fdCount = static_cast(std::distance(std::begin(distances), dist_end)); uint ir_total{0u}; for(uint fi{0u};fi < fdCount;) { const double dist{distances[fi]}; auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001}); /* Remove elevations that don't have a valid set of azimuths. */ auto invalid_elev = [&dist,&aers](const double ev) -> bool { auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); if(std::abs(90.0 - std::abs(ev)) < 0.1) return azims.size() != 1; if(azims.empty() || !(std::abs(azims[0]) < 0.1)) return true; return GetUniformAzimStep(0.1, azims) <= 0.0; }; elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); double step{GetUniformElevStep(0.1, elevs)}; if(step <= 0.0) { fprintf(stdout, "Non-uniform elevations on field distance %f.\n", dist); std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]); --fdCount; continue; } uint evStart{0u}; for(uint ei{0u};ei < elevs.size();ei++) { if(!(elevs[ei] < 0.0)) { fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); return false; } double eif{(90.0+elevs[ei]) / step}; const double ev_start{std::round(eif)}; if(std::abs(eif - ev_start) < (0.1/step)) { evStart = static_cast(ev_start); break; } } const auto evCount = static_cast(std::round(180.0 / step)) + 1; if(evCount < 5) { fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); std::copy(&distances[fi+1], &distances[fdCount], &distances[fi]); --fdCount; continue; } evCounts[fi] = evCount; for(uint ei{evStart};ei < evCount;ei++) { const double ev{-90.0 + ei*180.0/(evCount - 1)}; auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); uint azCount; if(ei == 0 || ei == (evCount-1)) { if(azims.size() != 1) { fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); return false; } azCount = 1u; } else { step = GetUniformAzimStep(0.1, azims); if(step <= 0.0) { fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", ev, dist); return false; } azCount = static_cast(std::round(360.0 / step)); } azCounts[fi*MAX_EV_COUNT + ei] = azCount; ir_total += azCount; } for(uint ei{0u};ei < evStart;ei++) azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1]; ++fi; } fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m); return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0; } bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData) { const char *srate_dim{nullptr}; const char *srate_units{nullptr}; MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate}; MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes}; while(srate_attrs) { if(std::string{"DIMENSION_LIST"} == srate_attrs->name) { if(srate_dim) { fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n"); return false; } srate_dim = srate_attrs->value; } else if(std::string{"Units"} == srate_attrs->name) { if(srate_units) { fprintf(stderr, "Duplicate SampleRate.Units\n"); return false; } srate_units = srate_attrs->value; } else fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name, srate_attrs->value); srate_attrs = srate_attrs->next; } if(!srate_dim) { fprintf(stderr, "Missing sample rate dimensions\n"); return false; } if(srate_dim != std::string{"I"}) { fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim); return false; } if(!srate_units) { fprintf(stderr, "Missing sample rate unit type\n"); return false; } if(srate_units != std::string{"hertz"}) { fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units); return false; } /* I dimensions guarantees 1 element, so just extract it. */ hData->mIrRate = static_cast(srate_array->values[0] + 0.5f); if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE) { fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate, MIN_RATE, MAX_RATE); return false; } return true; } bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData) { const char *delay_dim{nullptr}; MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay}; MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes}; while(delay_attrs) { if(std::string{"DIMENSION_LIST"} == delay_attrs->name) { if(delay_dim) { fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n"); return false; } delay_dim = delay_attrs->value; } else fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name, delay_attrs->value); delay_attrs = delay_attrs->next; } if(!delay_dim) { fprintf(stderr, "Missing delay dimensions\n"); /*return false;*/ } else if(delay_dim != std::string{"I,R"}) { fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim); return false; } else if(hData->mChannelType == CT_STEREO) { /* I,R is 1xChannelCount. Makemhr currently removes any delay constant, * so we can ignore this as long as it's equal. */ if(delay_array->values[0] != delay_array->values[1]) { fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0], delay_array->values[1]); return false; } } return true; } bool CheckIrData(MYSOFA_HRTF *sofaHrtf) { const char *ir_dim{nullptr}; MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR}; MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes}; while(ir_attrs) { if(std::string{"DIMENSION_LIST"} == ir_attrs->name) { if(ir_dim) { fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n"); return false; } ir_dim = ir_attrs->value; } else fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name, ir_attrs->value); ir_attrs = ir_attrs->next; } if(!ir_dim) { fprintf(stderr, "Missing IR dimensions\n"); return false; } if(ir_dim != std::string{"M,R,N"}) { fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim); return false; } return true; } /* Calculate the onset time of a HRIR. */ static double CalcHrirOnset(const uint rate, const uint n, std::vector &upsampled, const double *hrir) { { PPhaseResampler rs; rs.init(rate, 10 * rate); rs.process(n, hrir, 10 * n, upsampled.data()); } double mag{std::accumulate(upsampled.cbegin(), upsampled.cend(), double{0.0}, [](const double magnitude, const double sample) -> double { return std::max(magnitude, std::abs(sample)); })}; mag *= 0.15; auto iter = std::find_if(upsampled.cbegin(), upsampled.cend(), [mag](const double sample) -> bool { return (std::abs(sample) >= mag); }); return static_cast(std::distance(upsampled.cbegin(), iter)) / (10.0*rate); } /* Calculate the magnitude response of a HRIR. */ static void CalcHrirMagnitude(const uint points, const uint n, std::vector &h, const double *hrir, double *mag) { auto iter = std::copy_n(hrir, points, h.begin()); std::fill(iter, h.end(), complex_d{0.0, 0.0}); FftForward(n, h.data()); MagnitudeResponse(n, h.data(), mag); } static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData) { const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize); double *hrirs = hData->mHrirsBase.data(); /* Temporary buffers used to calculate the IR's onset and frequency * magnitudes. */ auto upsampled = std::vector(10 * hData->mIrPoints); auto htemp = std::vector(hData->mFftSize); auto hrir = std::vector(hData->mFftSize); for(uint si{0u};si < sofaHrtf->M;si++) { printf("\rLoading HRIRs... %d of %d", si+1, sofaHrtf->M); fflush(stdout); float aer[3]{ sofaHrtf->SourcePosition.values[3*si], sofaHrtf->SourcePosition.values[3*si + 1], sofaHrtf->SourcePosition.values[3*si + 2] }; mysofa_c2s(aer); if(std::abs(aer[1]) >= 89.999f) aer[0] = 0.0f; else aer[0] = std::fmod(360.0f - aer[0], 360.0f); auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(), [&aer](const HrirFdT &fld) -> bool { double delta = aer[2] - fld.mDistance; return (std::abs(delta) < 0.001); }); if(field == hData->mFds.cend()) continue; double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)}; auto ei = static_cast(std::round(ef)); ef = (ef-ei) * 180.0 / (field->mEvCount-1); if(std::abs(ef) >= 0.1) continue; double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount}; auto ai = static_cast(std::round(af)); af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount; ai %= field->mEvs[ei].mAzCount; if(std::abs(af) >= 0.1) continue; HrirAzT *azd = &field->mEvs[ei].mAzs[ai]; if(azd->mIrs[0] != nullptr) { fprintf(stderr, "Multiple measurements near [ a=%f, e=%f, r=%f ].\n", aer[0], aer[1], aer[2]); return false; } for(uint ti{0u};ti < channels;++ti) { std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N], hData->mIrPoints, hrir.begin()); azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)]; azd->mDelays[ti] = CalcHrirOnset(hData->mIrRate, hData->mIrPoints, upsampled, hrir.data()); CalcHrirMagnitude(hData->mIrPoints, hData->mFftSize, htemp, hrir.data(), azd->mIrs[ti]); } // TODO: Since some SOFA files contain minimum phase HRIRs, // it would be beneficial to check for per-measurement delays // (when available) to reconstruct the HRTDs. } printf("\n"); return true; } struct MySofaHrtfDeleter { void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); } }; using MySofaHrtfPtr = std::unique_ptr; bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData) { int err; MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)}; if(!sofaHrtf) { fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err)); return false; } /* NOTE: Some valid SOFA files are failing this check. */ err = mysofa_check(sofaHrtf.get()); if(err != MYSOFA_OK) fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename, SofaErrorStr(err)); mysofa_tocartesian(sofaHrtf.get()); /* Make sure emitter and receiver counts are sane. */ if(sofaHrtf->E != 1) { fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E); return false; } if(sofaHrtf->R > 2 || sofaHrtf->R < 1) { fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R); return false; } /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */ if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo) hData->mChannelType = CT_STEREO; else hData->mChannelType = CT_MONO; /* Check and set the FFT and IR size. */ if(sofaHrtf->N > fftSize) { fprintf(stderr, "Sample points exceeds the FFT size.\n"); return false; } if(sofaHrtf->N < truncSize) { fprintf(stderr, "Sample points is below the truncation size.\n"); return false; } hData->mIrPoints = sofaHrtf->N; hData->mFftSize = fftSize; hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N); /* Assume a default head radius of 9cm. */ hData->mRadius = 0.09; if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData) || !CheckIrData(sofaHrtf.get())) return false; if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData)) return false; if(!LoadResponses(sofaHrtf.get(), hData)) return false; sofaHrtf = nullptr; for(uint fi{0u};fi < hData->mFdCount;fi++) { uint ei{0u}; for(;ei < hData->mFds[fi].mEvCount;ei++) { uint ai{0u}; for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd.mIrs[0] != nullptr) break; } if(ai < hData->mFds[fi].mEvs[ei].mAzCount) break; } if(ei >= hData->mFds[fi].mEvCount) { fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi); return false; } hData->mFds[fi].mEvStart = ei; for(;ei < hData->mFds[fi].mEvCount;ei++) { for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd.mIrs[0] == nullptr) { fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); return false; } } } } const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; double *hrirs = hData->mHrirsBase.data(); for(uint fi{0u};fi < hData->mFdCount;fi++) { for(uint ei{0u};ei < hData->mFds[fi].mEvCount;ei++) { for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; for(uint ti{0u};ti < channels;ti++) azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)]; } } } return true; }