/* * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * * Copyright (C) 2018-2019 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html */ #include "loadsofa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alspan.h" #include "makemhr.h" #include "polyphase_resampler.h" #include "sofa-support.h" #include "mysofa.h" using uint = unsigned int; /* Attempts to produce a compatible layout. Most data sets tend to be * uniform and have the same major axis as used by OpenAL Soft's HRTF model. * This will remove outliers and produce a maximally dense layout when * possible. Those sets that contain purely random measurements or use * different major axes will fail. */ static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData) { fprintf(stdout, "Detecting compatible layout...\n"); auto fds = GetCompatibleLayout(m, xyzs); if(fds.size() > MAX_FD_COUNT) { fprintf(stdout, "Incompatible layout (inumerable radii).\n"); return false; } std::array distances{}; std::array evCounts{}; auto azCounts = std::vector>(MAX_FD_COUNT); for(auto &azs : azCounts) azs.fill(0u); uint fi{0u}, ir_total{0u}; for(const auto &field : fds) { distances[fi] = field.mDistance; evCounts[fi] = field.mEvCount; for(uint ei{0u};ei < field.mEvStart;ei++) azCounts[fi][ei] = field.mAzCounts[field.mEvCount-ei-1]; for(uint ei{field.mEvStart};ei < field.mEvCount;ei++) { azCounts[fi][ei] = field.mAzCounts[ei]; ir_total += field.mAzCounts[ei]; } ++fi; } fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m); const auto azs = al::span{azCounts}.first(); return PrepareHrirData(al::span{distances}.first(fi), evCounts, azs, hData); } float GetSampleRate(MYSOFA_HRTF *sofaHrtf) { const char *srate_dim{nullptr}; const char *srate_units{nullptr}; MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate}; MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes}; while(srate_attrs) { if(std::string{"DIMENSION_LIST"} == srate_attrs->name) { if(srate_dim) { fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n"); return 0.0f; } srate_dim = srate_attrs->value; } else if(std::string{"Units"} == srate_attrs->name) { if(srate_units) { fprintf(stderr, "Duplicate SampleRate.Units\n"); return 0.0f; } srate_units = srate_attrs->value; } else fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name, srate_attrs->value); srate_attrs = srate_attrs->next; } if(!srate_dim) { fprintf(stderr, "Missing sample rate dimensions\n"); return 0.0f; } if(srate_dim != std::string{"I"}) { fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim); return 0.0f; } if(!srate_units) { fprintf(stderr, "Missing sample rate unit type\n"); return 0.0f; } if(srate_units != std::string{"hertz"}) { fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units); return 0.0f; } /* I dimensions guarantees 1 element, so just extract it. */ if(srate_array->values[0] < MIN_RATE || srate_array->values[0] > MAX_RATE) { fprintf(stderr, "Sample rate out of range: %f (expected %u to %u)", srate_array->values[0], MIN_RATE, MAX_RATE); return 0.0f; } return srate_array->values[0]; } enum class DelayType : uint8_t { None, I_R, /* [1][Channels] */ M_R, /* [HRIRs][Channels] */ Invalid, }; DelayType PrepareDelay(MYSOFA_HRTF *sofaHrtf) { const char *delay_dim{nullptr}; MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay}; MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes}; while(delay_attrs) { if(std::string{"DIMENSION_LIST"} == delay_attrs->name) { if(delay_dim) { fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n"); return DelayType::Invalid; } delay_dim = delay_attrs->value; } else fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name, delay_attrs->value ? delay_attrs->value : ""); delay_attrs = delay_attrs->next; } if(!delay_dim) { fprintf(stderr, "Missing delay dimensions\n"); return DelayType::None; } if(delay_dim == std::string{"I,R"}) return DelayType::I_R; else if(delay_dim == std::string{"M,R"}) return DelayType::M_R; fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim); return DelayType::Invalid; } bool CheckIrData(MYSOFA_HRTF *sofaHrtf) { const char *ir_dim{nullptr}; MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR}; MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes}; while(ir_attrs) { if(std::string{"DIMENSION_LIST"} == ir_attrs->name) { if(ir_dim) { fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n"); return false; } ir_dim = ir_attrs->value; } else fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name, ir_attrs->value ? ir_attrs->value : ""); ir_attrs = ir_attrs->next; } if(!ir_dim) { fprintf(stderr, "Missing IR dimensions\n"); return false; } if(ir_dim != std::string{"M,R,N"}) { fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim); return false; } return true; } /* Calculate the onset time of a HRIR. */ static constexpr int OnsetRateMultiple{10}; static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n, al::span upsampled, const double *hrir) { rs.process(n, hrir, static_cast(upsampled.size()), upsampled.data()); auto abs_lt = [](const double &lhs, const double &rhs) -> bool { return std::abs(lhs) < std::abs(rhs); }; auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt); return static_cast(std::distance(upsampled.cbegin(), iter)) / (double{OnsetRateMultiple}*rate); } /* Calculate the magnitude response of a HRIR. */ static void CalcHrirMagnitude(const uint points, const uint n, al::span h, double *hrir) { auto iter = std::copy_n(hrir, points, h.begin()); std::fill(iter, h.end(), complex_d{0.0, 0.0}); FftForward(n, h.data()); MagnitudeResponse(n, h.data(), hrir); } static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData, const DelayType delayType, const uint outRate) { std::atomic loaded_count{0u}; auto load_proc = [sofaHrtf,hData,delayType,outRate,&loaded_count]() -> bool { const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0); double *hrirs = hData->mHrirsBase.data(); std::vector restmp; std::optional resampler; if(outRate && outRate != hData->mIrRate) { resampler.emplace().init(hData->mIrRate, outRate); restmp.resize(sofaHrtf->N); } for(uint si{0u};si < sofaHrtf->M;++si) { loaded_count.fetch_add(1u); std::array aer{ sofaHrtf->SourcePosition.values[3*si], sofaHrtf->SourcePosition.values[3*si + 1], sofaHrtf->SourcePosition.values[3*si + 2] }; mysofa_c2s(aer.data()); if(std::abs(aer[1]) >= 89.999f) aer[0] = 0.0f; else aer[0] = std::fmod(360.0f - aer[0], 360.0f); auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(), [&aer](const HrirFdT &fld) -> bool { return (std::abs(aer[2] - fld.mDistance) < 0.001); }); if(field == hData->mFds.cend()) continue; const double evscale{180.0 / static_cast(field->mEvs.size()-1)}; double ef{(90.0 + aer[1]) / evscale}; auto ei = static_cast(std::round(ef)); ef = (ef - ei) * evscale; if(std::abs(ef) >= 0.1) continue; const double azscale{360.0 / static_cast(field->mEvs[ei].mAzs.size())}; double af{aer[0] / azscale}; auto ai = static_cast(std::round(af)); af = (af-ai) * azscale; ai %= static_cast(field->mEvs[ei].mAzs.size()); if(std::abs(af) >= 0.1) continue; HrirAzT *azd = &field->mEvs[ei].mAzs[ai]; if(azd->mIrs[0] != nullptr) { fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n", aer[0], aer[1], aer[2]); return false; } for(uint ti{0u};ti < channels;++ti) { azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)]; if(!resampler) std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N], sofaHrtf->N, azd->mIrs[ti]); else { std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N], sofaHrtf->N, restmp.data()); resampler->process(sofaHrtf->N, restmp.data(), hData->mIrSize, azd->mIrs[ti]); } } /* Include any per-channel or per-HRIR delays. */ if(delayType == DelayType::I_R) { const float *delayValues{sofaHrtf->DataDelay.values}; for(uint ti{0u};ti < channels;++ti) azd->mDelays[ti] = delayValues[ti] / static_cast(hData->mIrRate); } else if(delayType == DelayType::M_R) { const float *delayValues{sofaHrtf->DataDelay.values}; for(uint ti{0u};ti < channels;++ti) azd->mDelays[ti] = delayValues[si*sofaHrtf->R + ti] / static_cast(hData->mIrRate); } } if(outRate && outRate != hData->mIrRate) { const double scale{static_cast(outRate) / hData->mIrRate}; hData->mIrRate = outRate; hData->mIrPoints = std::min(static_cast(std::ceil(hData->mIrPoints*scale)), hData->mIrSize); } return true; }; std::future_status load_status{}; auto load_future = std::async(std::launch::async, load_proc); do { load_status = load_future.wait_for(std::chrono::milliseconds{50}); printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M); fflush(stdout); } while(load_status != std::future_status::ready); fputc('\n', stdout); return load_future.get(); } /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to * this struct, which runs asynchronously on one or more threads (sharing the * same calculator object). */ struct MagCalculator { const uint mFftSize{}; const uint mIrPoints{}; std::vector mIrs{}; std::atomic mCurrent{}; std::atomic mDone{}; void Worker() { auto htemp = std::vector(mFftSize); while(true) { /* Load the current index to process. */ size_t idx{mCurrent.load()}; do { /* If the index is at the end, we're done. */ if(idx >= mIrs.size()) return; /* Otherwise, increment the current index atomically so other * threads know to go to the next one. If this call fails, the * current index was just changed by another thread and the new * value is loaded into idx, which we'll recheck. */ } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed)); CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]); /* Increment the number of IRs done. */ mDone.fetch_add(1); } } }; bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize, const uint truncSize, const uint outRate, const ChannelModeT chanMode, HrirDataT *hData) { int err; MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)}; if(!sofaHrtf) { fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err)); return false; } /* NOTE: Some valid SOFA files are failing this check. */ err = mysofa_check(sofaHrtf.get()); if(err != MYSOFA_OK) fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename, SofaErrorStr(err)); mysofa_tocartesian(sofaHrtf.get()); /* Make sure emitter and receiver counts are sane. */ if(sofaHrtf->E != 1) { fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E); return false; } if(sofaHrtf->R > 2 || sofaHrtf->R < 1) { fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R); return false; } /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */ if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo) hData->mChannelType = CT_STEREO; else hData->mChannelType = CT_MONO; /* Check and set the FFT and IR size. */ if(sofaHrtf->N > fftSize) { fprintf(stderr, "Sample points exceeds the FFT size.\n"); return false; } if(sofaHrtf->N < truncSize) { fprintf(stderr, "Sample points is below the truncation size.\n"); return false; } hData->mIrPoints = sofaHrtf->N; hData->mFftSize = fftSize; hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N); /* Assume a default head radius of 9cm. */ hData->mRadius = 0.09; hData->mIrRate = static_cast(GetSampleRate(sofaHrtf.get()) + 0.5f); if(!hData->mIrRate) return false; DelayType delayType = PrepareDelay(sofaHrtf.get()); if(delayType == DelayType::Invalid) return false; if(!CheckIrData(sofaHrtf.get())) return false; if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData)) return false; if(!LoadResponses(sofaHrtf.get(), hData, delayType, outRate)) return false; sofaHrtf = nullptr; for(uint fi{0u};fi < hData->mFds.size();fi++) { uint ei{0u}; for(;ei < hData->mFds[fi].mEvs.size();ei++) { uint ai{0u}; for(;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd.mIrs[0] != nullptr) break; } if(ai < hData->mFds[fi].mEvs[ei].mAzs.size()) break; } if(ei >= hData->mFds[fi].mEvs.size()) { fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi); return false; } hData->mFds[fi].mEvStart = ei; for(;ei < hData->mFds[fi].mEvs.size();ei++) { for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd.mIrs[0] == nullptr) { fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); return false; } } } } size_t hrir_total{0}; const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; double *hrirs = hData->mHrirsBase.data(); for(uint fi{0u};fi < hData->mFds.size();fi++) { for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++) { for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; for(uint ti{0u};ti < channels;ti++) azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)]; } } for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();ei++) hrir_total += hData->mFds[fi].mEvs[ei].mAzs.size() * channels; } std::atomic hrir_done{0}; auto onset_proc = [hData,channels,&hrir_done]() -> bool { /* Temporary buffer used to calculate the IR's onset. */ auto upsampled = std::vector(OnsetRateMultiple * hData->mIrPoints); /* This resampler is used to help detect the response onset. */ PPhaseResampler rs; rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate); for(auto &field : hData->mFds) { for(auto &elev : field.mEvs.subspan(field.mEvStart)) { for(auto &azd : elev.mAzs) { for(uint ti{0};ti < channels;ti++) { hrir_done.fetch_add(1u, std::memory_order_acq_rel); azd.mDelays[ti] += CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints, upsampled, azd.mIrs[ti]); } } } } return true; }; std::future_status load_status{}; auto load_future = std::async(std::launch::async, onset_proc); do { load_status = load_future.wait_for(std::chrono::milliseconds{50}); printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total); fflush(stdout); } while(load_status != std::future_status::ready); fputc('\n', stdout); if(!load_future.get()) return false; MagCalculator calculator{hData->mFftSize, hData->mIrPoints}; for(auto &field : hData->mFds) { for(auto &elev : field.mEvs.subspan(field.mEvStart)) { for(auto &azd : elev.mAzs) { for(uint ti{0};ti < channels;ti++) calculator.mIrs.push_back(azd.mIrs[ti]); } } } std::vector thrds; thrds.reserve(numThreads); for(size_t i{0};i < numThreads;++i) thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator); size_t count; do { std::this_thread::sleep_for(std::chrono::milliseconds{50}); count = calculator.mDone.load(); printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size()); fflush(stdout); } while(count != calculator.mIrs.size()); fputc('\n', stdout); for(auto &thrd : thrds) { if(thrd.joinable()) thrd.join(); } return true; }