/* * 2-channel UHJ Decoder * * Copyright (c) Chris Robinson * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include #include #include "albit.h" #include "alcomplex.h" #include "almalloc.h" #include "alnumbers.h" #include "alspan.h" #include "vector.h" #include "opthelpers.h" #include "phase_shifter.h" #include "sndfile.h" #include "win_main_utf8.h" struct FileDeleter { void operator()(gsl::owner file) { fclose(file); } }; using FilePtr = std::unique_ptr; struct SndFileDeleter { void operator()(SNDFILE *sndfile) { sf_close(sndfile); } }; using SndFilePtr = std::unique_ptr; using ubyte = unsigned char; using ushort = unsigned short; using uint = unsigned int; using complex_d = std::complex; using byte4 = std::array; constexpr std::array SUBTYPE_BFORMAT_FLOAT{ 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1, 0xca, 0x00, 0x00, 0x00 }; void fwrite16le(ushort val, FILE *f) { std::array data{static_cast(val&0xff), static_cast((val>>8)&0xff)}; fwrite(data.data(), 1, data.size(), f); } void fwrite32le(uint val, FILE *f) { std::array data{static_cast(val&0xff), static_cast((val>>8)&0xff), static_cast((val>>16)&0xff), static_cast((val>>24)&0xff)}; fwrite(data.data(), 1, data.size(), f); } template byte4 f32AsLEBytes(const float &value) = delete; template<> byte4 f32AsLEBytes(const float &value) { byte4 ret{}; std::memcpy(ret.data(), &value, 4); return ret; } template<> byte4 f32AsLEBytes(const float &value) { byte4 ret{}; std::memcpy(ret.data(), &value, 4); std::swap(ret[0], ret[3]); std::swap(ret[1], ret[2]); return ret; } constexpr uint BufferLineSize{1024}; using FloatBufferLine = std::array; using FloatBufferSpan = al::span; struct UhjDecoder { constexpr static std::size_t sFilterDelay{1024}; alignas(16) std::array mS{}; alignas(16) std::array mD{}; alignas(16) std::array mT{}; alignas(16) std::array mQ{}; /* History for the FIR filter. */ alignas(16) std::array mDTHistory{}; alignas(16) std::array mSHistory{}; alignas(16) std::array mTemp{}; void decode(const float *RESTRICT InSamples, const std::size_t InChannels, const al::span OutSamples, const std::size_t SamplesToDo); void decode2(const float *RESTRICT InSamples, const al::span OutSamples, const std::size_t SamplesToDo); }; const PhaseShifterT PShift{}; /* Decoding UHJ is done as: * * S = Left + Right * D = Left - Right * * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) * X = 0.418496*S - j(0.828331*D + 0.767820*T) * Y = 0.795968*D - 0.676392*T + j(0.186633*S) * Z = 1.023332*Q * * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2- * channel excludes Q and T. The B-Format signal reconstructed from 2-channel * UHJ should not be run through a normal B-Format decoder, as it needs * different shelf filters. * * NOTE: Some sources specify * * S = (Left + Right)/2 * D = (Left - Right)/2 * * However, this is incorrect. It's halving Left and Right even though they * were already halved during encoding, causing S and D to be half what they * initially were at the encoding stage. This division is not present in * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R * signals. As proof, taking Y for example: * * Y = 0.795968*D - 0.676392*T + j(0.186633*S) * * * Plug in the encoding parameters, using ? as a placeholder for whether S * and D should receive an extra 0.5 factor * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? - * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) + * 0.186633*j(0.9396926*W + 0.1855740*X)*? * * * Move common factors in * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) - * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) + * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) * * * Clean up extraneous groupings * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y - * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y + * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) * * * Move phase shifts together and combine them * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W - * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) + * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y * * * Reorder terms * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W + * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) + * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y * * * Move common factors out * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W + * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) + * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y * * * Result w/ 0.5 factor: * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y * * * Result w/o 0.5 factor: * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y * * Not halving produces a result matching the original input. */ void UhjDecoder::decode(const float *RESTRICT InSamples, const std::size_t InChannels, const al::span OutSamples, const std::size_t SamplesToDo) { ASSUME(SamplesToDo > 0); float *woutput{OutSamples[0].data()}; float *xoutput{OutSamples[1].data()}; float *youtput{OutSamples[2].data()}; /* Add a delay to the input channels, to align it with the all-passed * signal. */ /* S = Left + Right */ for(std::size_t i{0};i < SamplesToDo;++i) mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1]; /* D = Left - Right */ for(std::size_t i{0};i < SamplesToDo;++i) mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1]; if(InChannels > 2) { /* T */ for(std::size_t i{0};i < SamplesToDo;++i) mT[sFilterDelay+i] = InSamples[i*InChannels + 2]; } if(InChannels > 3) { /* Q */ for(std::size_t i{0};i < SamplesToDo;++i) mQ[sFilterDelay+i] = InSamples[i*InChannels + 3]; } /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin()); std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter, [](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; }); std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin()); PShift.process({xoutput, SamplesToDo}, mTemp.data()); for(std::size_t i{0};i < SamplesToDo;++i) { /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */ woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i]; /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */ xoutput[i] = 0.418496f*mS[i] - xoutput[i]; } /* Precompute j*S and store in youtput. */ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin()); std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin()); PShift.process({youtput, SamplesToDo}, mTemp.data()); for(std::size_t i{0};i < SamplesToDo;++i) { /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */ youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i]; } if(OutSamples.size() > 3) { float *zoutput{OutSamples[3].data()}; /* Z = 1.023332*Q */ for(std::size_t i{0};i < SamplesToDo;++i) zoutput[i] = 1.023332f*mQ[i]; } std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin()); std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin()); std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin()); std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin()); } /* This is an alternative equation for decoding 2-channel UHJ. Not sure what * the intended benefit is over the above equation as this slightly reduces the * amount of the original left response and has more of the phase-shifted * forward response on the left response. * * This decoding is done as: * * S = Left + Right * D = Left - Right * * W = 0.981530*S + j*0.163585*D * X = 0.418504*S - j*0.828347*D * Y = 0.762956*D + j*0.384230*S * * where j is a +90 degree phase shift. * * NOTE: As above, S and D should not be halved. The only consequence of * halving here is merely a -6dB reduction in output, but it's still incorrect. */ void UhjDecoder::decode2(const float *RESTRICT InSamples, const al::span OutSamples, const std::size_t SamplesToDo) { ASSUME(SamplesToDo > 0); float *woutput{OutSamples[0].data()}; float *xoutput{OutSamples[1].data()}; float *youtput{OutSamples[2].data()}; /* S = Left + Right */ for(std::size_t i{0};i < SamplesToDo;++i) mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1]; /* D = Left - Right */ for(std::size_t i{0};i < SamplesToDo;++i) mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1]; /* Precompute j*D and store in xoutput. */ auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin()); std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin()); PShift.process({xoutput, SamplesToDo}, mTemp.data()); for(std::size_t i{0};i < SamplesToDo;++i) { /* W = 0.981530*S + j*0.163585*D */ woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i]; /* X = 0.418504*S - j*0.828347*D */ xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i]; } /* Precompute j*S and store in youtput. */ tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin()); std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter); std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin()); PShift.process({youtput, SamplesToDo}, mTemp.data()); for(std::size_t i{0};i < SamplesToDo;++i) { /* Y = 0.762956*D + j*0.384230*S */ youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i]; } std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin()); std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin()); } int main(int argc, char **argv) { if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0) { printf("Usage: %s <[options] filename.wav...>\n\n" " Options:\n" " --general Use the general equations for 2-channel UHJ (default).\n" " --alternative Use the alternative equations for 2-channel UHJ.\n" "\n" "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n" "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n" "reconstruct the original B-Format signal.", argv[0]); return 1; } std::size_t num_files{0}, num_decoded{0}; bool use_general{true}; for(int fidx{1};fidx < argc;++fidx) { if(std::strcmp(argv[fidx], "--general") == 0) { use_general = true; continue; } if(std::strcmp(argv[fidx], "--alternative") == 0) { use_general = false; continue; } ++num_files; SF_INFO ininfo{}; SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)}; if(!infile) { fprintf(stderr, "Failed to open %s\n", argv[fidx]); continue; } if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, nullptr, 0) == SF_AMBISONIC_B_FORMAT) { fprintf(stderr, "%s is already B-Format\n", argv[fidx]); continue; } uint outchans{}; if(ininfo.channels == 2) outchans = 3; else if(ininfo.channels == 3 || ininfo.channels == 4) outchans = static_cast(ininfo.channels); else { fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]); continue; } printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels, (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : ""); std::string outname{argv[fidx]}; auto lastslash = outname.find_last_of('/'); if(lastslash != std::string::npos) outname.erase(0, lastslash+1); auto lastdot = outname.find_last_of('.'); if(lastdot != std::string::npos) outname.resize(lastdot+1); outname += "amb"; FilePtr outfile{fopen(outname.c_str(), "wb")}; if(!outfile) { fprintf(stderr, "Failed to create %s\n", outname.c_str()); continue; } fputs("RIFF", outfile.get()); fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close fputs("WAVE", outfile.get()); fputs("fmt ", outfile.get()); fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE // 16-bit val, format type id (extensible: 0xFFFE) fwrite16le(0xFFFE, outfile.get()); // 16-bit val, channel count fwrite16le(static_cast(outchans), outfile.get()); // 32-bit val, frequency fwrite32le(static_cast(ininfo.samplerate), outfile.get()); // 32-bit val, bytes per second fwrite32le(static_cast(ininfo.samplerate)*outchans*uint{sizeof(float)}, outfile.get()); // 16-bit val, frame size fwrite16le(static_cast(sizeof(float)*outchans), outfile.get()); // 16-bit val, bits per sample fwrite16le(static_cast(sizeof(float)*8), outfile.get()); // 16-bit val, extra byte count fwrite16le(22, outfile.get()); // 16-bit val, valid bits per sample fwrite16le(static_cast(sizeof(float)*8), outfile.get()); // 32-bit val, channel mask fwrite32le(0, outfile.get()); // 16 byte GUID, sub-type format fwrite(SUBTYPE_BFORMAT_FLOAT.data(), 1, SUBTYPE_BFORMAT_FLOAT.size(), outfile.get()); fputs("data", outfile.get()); fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close if(ferror(outfile.get())) { fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno); continue; } auto DataStart = ftell(outfile.get()); auto decoder = std::make_unique(); auto inmem = std::vector(size_t{BufferLineSize}*static_cast(ininfo.channels)); auto decmem = al::vector, 16>(outchans); auto outmem = std::vector(size_t{BufferLineSize}*outchans); /* A number of initial samples need to be skipped to cut the lead-in * from the all-pass filter delay. The same number of samples need to * be fed through the decoder after reaching the end of the input file * to ensure none of the original input is lost. */ std::size_t LeadIn{UhjDecoder::sFilterDelay}; sf_count_t LeadOut{UhjDecoder::sFilterDelay}; while(LeadOut > 0) { sf_count_t sgot{sf_readf_float(infile.get(), inmem.data(), BufferLineSize)}; sgot = std::max(sgot, 0); if(sgot < BufferLineSize) { const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)}; std::fill_n(inmem.data() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f); sgot += remaining; LeadOut -= remaining; } auto got = static_cast(sgot); if(ininfo.channels > 2 || use_general) decoder->decode(inmem.data(), static_cast(ininfo.channels), decmem, got); else decoder->decode2(inmem.data(), decmem, got); if(LeadIn >= got) { LeadIn -= got; continue; } got -= LeadIn; for(std::size_t i{0};i < got;++i) { /* Attenuate by -3dB for FuMa output levels. */ constexpr auto inv_sqrt2 = static_cast(1.0/al::numbers::sqrt2); for(std::size_t j{0};j < outchans;++j) outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2); } LeadIn = 0; std::size_t wrote{fwrite(outmem.data(), sizeof(byte4)*outchans, got, outfile.get())}; if(wrote < got) { fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno); break; } } auto DataEnd = ftell(outfile.get()); if(DataEnd > DataStart) { long dataLen{DataEnd - DataStart}; if(fseek(outfile.get(), 4, SEEK_SET) == 0) fwrite32le(static_cast(DataEnd-8), outfile.get()); // 'WAVE' header len if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0) fwrite32le(static_cast(dataLen), outfile.get()); // 'data' header len } fflush(outfile.get()); ++num_decoded; } if(num_decoded == 0) fprintf(stderr, "Failed to decode any input files\n"); else if(num_decoded < num_files) fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files); else printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s"); return 0; }