/* * 2-channel UHJ Encoder * * Copyright (c) Chris Robinson * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include #include #include "almalloc.h" #include "alspan.h" #include "math_defs.h" #include "opthelpers.h" #include "phase_shifter.h" #include "vector.h" #include "sndfile.h" #include "win_main_utf8.h" namespace { struct SndFileDeleter { void operator()(SNDFILE *sndfile) { sf_close(sndfile); } }; using SndFilePtr = std::unique_ptr; using uint = unsigned int; constexpr uint BufferLineSize{1024}; using FloatBufferLine = std::array; using FloatBufferSpan = al::span; struct UhjEncoder { constexpr static size_t sFilterDelay{256}; /* Delays and processing storage for the unfiltered signal. */ alignas(16) std::array mS{}; alignas(16) std::array mD{}; /* History for the FIR filter. */ alignas(16) std::array mWXHistory{}; alignas(16) std::array mTemp{}; void encode(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const FloatBufferLine *InSamples, const size_t SamplesToDo); DEF_NEWDEL(UhjEncoder) }; const PhaseShifterT PShift{}; /* Encoding UHJ from B-Format is done as: * * S = 0.9396926*W + 0.1855740*X * D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y * * Left = (S + D)/2.0 * Right = (S - D)/2.0 * T = j(-0.1432*W + 0.6511746*X) - 0.7071068*Y * Q = 0.9772*Z * * where j is a wide-band +90 degree phase shift. T is excluded from 2-channel * output, and Q is excluded from 2- and 3-channel output. */ void UhjEncoder::encode(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, const FloatBufferLine *InSamples, const size_t SamplesToDo) { float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())}; float *RESTRICT right{al::assume_aligned<16>(RightOut.data())}; const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())}; const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())}; const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())}; /* Combine the previously delayed S/D signal with the input. */ /* S = 0.9396926*W + 0.1855740*X */ auto miditer = mS.begin() + sFilterDelay; std::transform(winput, winput+SamplesToDo, xinput, miditer, [](const float w, const float x) noexcept -> float { return 0.9396926f*w + 0.1855740f*x; }); /* D = 0.6554516*Y */ auto sideiter = mD.begin() + sFilterDelay; std::transform(yinput, yinput+SamplesToDo, sideiter, [](const float y) noexcept -> float { return 0.6554516f*y; }); /* D += j(-0.3420201*W + 0.5098604*X) */ auto tmpiter = std::copy(mWXHistory.cbegin(), mWXHistory.cend(), mTemp.begin()); std::transform(winput, winput+SamplesToDo, xinput, tmpiter, [](const float w, const float x) noexcept -> float { return -0.3420201f*w + 0.5098604f*x; }); std::copy_n(mTemp.cbegin()+SamplesToDo, mWXHistory.size(), mWXHistory.begin()); PShift.processAccum({mD.data(), SamplesToDo}, mTemp.data()); /* Left = (S + D)/2.0 */ for(size_t i{0};i < SamplesToDo;i++) left[i] = (mS[i] + mD[i]) * 0.5f; /* Right = (S - D)/2.0 */ for(size_t i{0};i < SamplesToDo;i++) right[i] = (mS[i] - mD[i]) * 0.5f; /* Copy the future samples to the front for next time. */ std::copy(mS.cbegin()+SamplesToDo, mS.cbegin()+SamplesToDo+sFilterDelay, mS.begin()); std::copy(mD.cbegin()+SamplesToDo, mD.cbegin()+SamplesToDo+sFilterDelay, mD.begin()); } struct SpeakerPos { int mChannelID; float mAzimuth; float mElevation; }; /* Azimuth is counter-clockwise. */ const SpeakerPos StereoMap[2]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, }, QuadMap[4]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 45.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad( -45.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_REAR_LEFT, Deg2Rad( 135.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_REAR_RIGHT, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, }, X51Map[6]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_CENTER, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_LFE, 0.0f, 0.0f }, { SF_CHANNEL_MAP_SIDE_LEFT, Deg2Rad( 110.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_SIDE_RIGHT, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, }, X51RearMap[6]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_CENTER, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_LFE, 0.0f, 0.0f }, { SF_CHANNEL_MAP_REAR_LEFT, Deg2Rad( 110.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_REAR_RIGHT, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, }, X71Map[8]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_CENTER, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_LFE, 0.0f, 0.0f }, { SF_CHANNEL_MAP_REAR_LEFT, Deg2Rad( 150.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_REAR_RIGHT, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_SIDE_LEFT, Deg2Rad( 90.0f), Deg2Rad(0.0f) }, { SF_CHANNEL_MAP_SIDE_RIGHT, Deg2Rad( -90.0f), Deg2Rad(0.0f) }, }, X714Map[12]{ { SF_CHANNEL_MAP_LEFT, Deg2Rad( 30.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_RIGHT, Deg2Rad( -30.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_CENTER, Deg2Rad( 0.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_LFE, 0.0f, 0.0f }, { SF_CHANNEL_MAP_REAR_LEFT, Deg2Rad( 150.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_REAR_RIGHT, Deg2Rad(-150.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_SIDE_LEFT, Deg2Rad( 90.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_SIDE_RIGHT, Deg2Rad( -90.0f), Deg2Rad( 0.0f) }, { SF_CHANNEL_MAP_TOP_FRONT_LEFT, Deg2Rad( 45.0f), Deg2Rad(35.0f) }, { SF_CHANNEL_MAP_TOP_FRONT_RIGHT, Deg2Rad( -45.0f), Deg2Rad(35.0f) }, { SF_CHANNEL_MAP_TOP_REAR_LEFT, Deg2Rad( 135.0f), Deg2Rad(35.0f) }, { SF_CHANNEL_MAP_TOP_REAR_RIGHT, Deg2Rad(-135.0f), Deg2Rad(35.0f) }, }; inline std::array GenCoeffs(float x /*+front*/, float y /*+left*/, float z /*+up*/) { /* Coefficients are +3dB of FuMa. */ std::array coeffs; coeffs[0] = 1.0f; coeffs[1] = 1.41421356237f * x; coeffs[2] = 1.41421356237f * y; coeffs[3] = 1.41421356237f * z; return coeffs; } } // namespace int main(int argc, char **argv) { if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0) { printf("Usage: %s \n\n", argv[0]); return 1; } size_t num_files{0}, num_encoded{0}; for(int fidx{1};fidx < argc;++fidx) { ++num_files; std::string outname{argv[fidx]}; size_t lastslash{outname.find_last_of('/')}; if(lastslash != std::string::npos) outname.erase(0, lastslash+1); size_t extpos{outname.find_last_of('.')}; if(extpos != std::string::npos) outname.resize(extpos); outname += ".uhj.flac"; SF_INFO ininfo{}; SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)}; if(!infile) { fprintf(stderr, "Failed to open %s\n", argv[fidx]); continue; } printf("Converting %s to %s...\n", argv[fidx], outname.c_str()); /* Work out the channel map, preferably using the actual channel map * from the file/format, but falling back to assuming WFX order. * * TODO: Map indices when the channel order differs from the virtual * speaker position maps. */ al::span spkrs; auto chanmap = std::vector(static_cast(ininfo.channels), SF_CHANNEL_MAP_INVALID); if(sf_command(infile.get(), SFC_GET_CHANNEL_MAP_INFO, chanmap.data(), ininfo.channels*int{sizeof(int)}) == SF_TRUE) { static const std::array stereomap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT}}; static const std::array quadmap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT, SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT}}; static const std::array x51map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT, SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE, SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT}}; static const std::array x51rearmap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT, SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE, SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT}}; static const std::array x71map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT, SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE, SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT, SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT}}; static const std::array x714map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT, SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE, SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT, SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT, SF_CHANNEL_MAP_TOP_FRONT_LEFT, SF_CHANNEL_MAP_TOP_FRONT_RIGHT, SF_CHANNEL_MAP_TOP_REAR_LEFT, SF_CHANNEL_MAP_TOP_REAR_RIGHT}}; static const std::array ambi2dmap{{SF_CHANNEL_MAP_AMBISONIC_B_W, SF_CHANNEL_MAP_AMBISONIC_B_X, SF_CHANNEL_MAP_AMBISONIC_B_Y}}; static const std::array ambi3dmap{{SF_CHANNEL_MAP_AMBISONIC_B_W, SF_CHANNEL_MAP_AMBISONIC_B_X, SF_CHANNEL_MAP_AMBISONIC_B_Y, SF_CHANNEL_MAP_AMBISONIC_B_Z}}; auto match_chanmap = [](const al::span a, const al::span b) -> bool { return a.size() == b.size() && std::mismatch(a.begin(), a.end(), b.begin(), b.end()).first == a.end(); }; if(match_chanmap(chanmap, stereomap)) spkrs = StereoMap; else if(match_chanmap(chanmap, quadmap)) spkrs = QuadMap; else if(match_chanmap(chanmap, x51map)) spkrs = X51Map; else if(match_chanmap(chanmap, x51rearmap)) spkrs = X51RearMap; else if(match_chanmap(chanmap, x71map)) spkrs = X71Map; else if(match_chanmap(chanmap, x714map)) spkrs = X714Map; else if(match_chanmap(chanmap, ambi2dmap) || match_chanmap(chanmap, ambi3dmap)) { /* Do nothing. */ } else { std::string mapstr; if(chanmap.size() > 0) { mapstr = std::to_string(chanmap[0]); for(int idx : al::span{chanmap}.subspan<1>()) { mapstr += ','; mapstr += std::to_string(idx); } } fprintf(stderr, " ... %zu channels not supported (map: %s)\n", chanmap.size(), mapstr.c_str()); continue; } } else if(ininfo.channels == 2) { fprintf(stderr, " ... assuming WFX order stereo\n"); spkrs = StereoMap; } else if(ininfo.channels == 6) { fprintf(stderr, " ... assuming WFX order 5.1\n"); spkrs = X51Map; } else if(ininfo.channels == 8) { fprintf(stderr, " ... assuming WFX order 7.1\n"); spkrs = X71Map; } else { fprintf(stderr, " ... unmapped %d-channel audio not supported\n", ininfo.channels); continue; } SF_INFO outinfo{}; outinfo.frames = ininfo.frames; outinfo.samplerate = ininfo.samplerate; outinfo.channels = 2; outinfo.format = SF_FORMAT_PCM_24 | SF_FORMAT_FLAC; SndFilePtr outfile{sf_open(outname.c_str(), SFM_WRITE, &outinfo)}; if(!outfile) { fprintf(stderr, " ... failed to create %s\n", outname.c_str()); continue; } auto encoder = std::make_unique(); auto splbuf = al::vector(static_cast(ininfo.channels+9)); auto ambmem = al::span{&splbuf[0], 4}; auto encmem = al::span{&splbuf[4], 2}; auto srcmem = al::span{splbuf[6].data(), BufferLineSize}; auto outmem = al::span{splbuf[7].data(), BufferLineSize*2}; /* A number of initial samples need to be skipped to cut the lead-in * from the all-pass filter delay. The same number of samples need to * be fed through the encoder after reaching the end of the input file * to ensure none of the original input is lost. */ size_t total_wrote{0}; size_t LeadIn{UhjEncoder::sFilterDelay}; sf_count_t LeadOut{UhjEncoder::sFilterDelay}; while(LeadIn > 0 || LeadOut > 0) { auto inmem = splbuf[9].data(); auto sgot = sf_readf_float(infile.get(), inmem, BufferLineSize); sgot = std::max(sgot, 0); if(sgot < BufferLineSize) { const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)}; std::fill_n(inmem + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f); sgot += remaining; LeadOut -= remaining; } for(auto&& buf : ambmem) buf.fill(0.0f); auto got = static_cast(sgot); if(spkrs.empty()) { /* B-Format is already in the correct order. It just needs a * +3dB boost. */ constexpr float scale{1.41421356237f}; const size_t chans{std::min(static_cast(ininfo.channels), 4u)}; for(size_t c{0};c < chans;++c) { for(size_t i{0};i < got;++i) ambmem[c][i] = inmem[i*static_cast(ininfo.channels)] * scale; ++inmem; } } else for(auto&& spkr : spkrs) { /* Skip LFE. Or mix directly into W? Or W+X? */ if(spkr.mChannelID == SF_CHANNEL_MAP_LFE) { ++inmem; continue; } for(size_t i{0};i < got;++i) srcmem[i] = inmem[i * static_cast(ininfo.channels)]; ++inmem; const auto coeffs = GenCoeffs( std::cos(spkr.mAzimuth) * std::cos(spkr.mElevation), std::sin(spkr.mAzimuth) * std::cos(spkr.mElevation), std::sin(spkr.mElevation)); for(size_t c{0};c < 4;++c) { for(size_t i{0};i < got;++i) ambmem[c][i] += srcmem[i] * coeffs[c]; } } encoder->encode(encmem[0], encmem[1], ambmem.data(), got); if(LeadIn >= got) { LeadIn -= got; continue; } got -= LeadIn; for(size_t c{0};c < 2;++c) { constexpr float max_val{8388607.0f / 8388608.0f}; auto clamp = [](float v, float mn, float mx) noexcept { return std::min(std::max(v, mn), mx); }; for(size_t i{0};i < got;++i) outmem[i*2 + c] = clamp(encmem[c][LeadIn+i], -1.0f, max_val); } LeadIn = 0; sf_count_t wrote{sf_writef_float(outfile.get(), outmem.data(), static_cast(got))}; if(wrote < 0) fprintf(stderr, " ... failed to write samples: %d\n", sf_error(outfile.get())); else total_wrote += static_cast(wrote); } printf(" ... wrote %zu samples (%" PRId64 ").\n", total_wrote, int64_t{ininfo.frames}); ++num_encoded; } if(num_encoded == 0) fprintf(stderr, "Failed to encode any input files\n"); else if(num_encoded < num_files) fprintf(stderr, "Encoded %zu of %zu files\n", num_encoded, num_files); else printf("Encoded %s%zu file%s\n", (num_encoded > 1) ? "all " : "", num_encoded, (num_encoded == 1) ? "" : "s"); return 0; }