aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/ALu.c
blob: effa5e2d4a17ce2132be862da726589f96d9f00e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/**
 * OpenAL cross platform audio library
 * Copyright (C) 1999-2007 by authors.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>

#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"


static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
    outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
    outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
    outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}

static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
    return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
           inVector1[2]*inVector2[2];
}

static __inline ALvoid aluNormalize(ALfloat *inVector)
{
    ALfloat length, inverse_length;

    length = aluSqrt(aluDotproduct(inVector, inVector));
    if(length != 0.0f)
    {
        inverse_length = 1.0f/length;
        inVector[0] *= inverse_length;
        inVector[1] *= inverse_length;
        inVector[2] *= inverse_length;
    }
}

static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
{
    ALfloat temp[4] = {
        vector[0], vector[1], vector[2], w
    };

    vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
    vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
    vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
}


ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
{
    ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
    ALbufferlistitem *BufferListItem;
    ALfloat DryGain, DryGainHF;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALint NumSends, Frequency;
    ALfloat cw;
    ALint i;

    //Get context properties
    NumSends  = ALContext->Device->NumAuxSends;
    Frequency = ALContext->Device->Frequency;

    //Get listener properties
    ListenerGain = ALContext->Listener.Gain;

    //Get source properties
    SourceVolume = ALSource->flGain;
    MinVolume    = ALSource->flMinGain;
    MaxVolume    = ALSource->flMaxGain;

    //1. Multi-channel buffers always play "normal"
    BufferListItem = ALSource->queue;
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            ALSource->Params.Pitch = ALSource->flPitch*ALBuffer->frequency /
                                     Frequency;
            break;
        }
        BufferListItem = BufferListItem->next;
    }

    DryGain = SourceVolume;
    DryGain = __min(DryGain,MaxVolume);
    DryGain = __max(DryGain,MinVolume);
    DryGainHF = 1.0f;

    switch(ALSource->DirectFilter.type)
    {
        case AL_FILTER_LOWPASS:
            DryGain *= ALSource->DirectFilter.Gain;
            DryGainHF *= ALSource->DirectFilter.GainHF;
            break;
    }

    for(i = 0;i < OUTPUTCHANNELS;i++)
        ALSource->Params.DryGains[i] = DryGain * ListenerGain;

    for(i = 0;i < NumSends;i++)
    {
        WetGain[i] = SourceVolume;
        WetGain[i] = __min(WetGain[i],MaxVolume);
        WetGain[i] = __max(WetGain[i],MinVolume);
        WetGainHF[i] = 1.0f;

        switch(ALSource->Send[i].WetFilter.type)
        {
            case AL_FILTER_LOWPASS:
                WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
                WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
                break;
        }

        ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
    }
    for(i = NumSends;i < MAX_SENDS;i++)
    {
        ALSource->Params.WetGains[i] = 0.0f;
        WetGainHF[i] = 1.0f;
    }

    /* Update filter coefficients. Calculations based on the I3DL2
     * spec. */
    cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);

    /* We use two chained one-pole filters, so we need to take the
     * square root of the squared gain, which is the same as the base
     * gain. */
    ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);

    for(i = 0;i < NumSends;i++)
    {
        /* We use a one-pole filter, so we need to take the squared gain */
        ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
        ALSource->Params.Send[i].iirFilter.coeff = a;
    }
}

ALvoid CalcNonAttnStereoSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
{
    ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
    ALbufferlistitem *BufferListItem;
    ALfloat DryGain, DryGainHF;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALint NumSends, Frequency;
    ALboolean DupStereo;
    ALenum Format;
    ALfloat cw;
    ALint i;

    //Get context properties
    Format    = ALContext->Device->Format;
    DupStereo = ALContext->Device->DuplicateStereo;
    NumSends  = ALContext->Device->NumAuxSends;
    Frequency = ALContext->Device->Frequency;

    //Get listener properties
    ListenerGain = ALContext->Listener.Gain;

    //Get source properties
    SourceVolume = ALSource->flGain;
    MinVolume    = ALSource->flMinGain;
    MaxVolume    = ALSource->flMaxGain;

    //1. Multi-channel buffers always play "normal"
    BufferListItem = ALSource->queue;
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            ALSource->Params.Pitch = ALSource->flPitch*ALBuffer->frequency /
                                     Frequency;
            break;
        }
        BufferListItem = BufferListItem->next;
    }

    DryGain = SourceVolume;
    DryGain = __min(DryGain,MaxVolume);
    DryGain = __max(DryGain,MinVolume);
    DryGainHF = 1.0f;

    switch(ALSource->DirectFilter.type)
    {
        case AL_FILTER_LOWPASS:
            DryGain *= ALSource->DirectFilter.Gain;
            DryGainHF *= ALSource->DirectFilter.GainHF;
            break;
    }

    for(i = 0;i < OUTPUTCHANNELS;i++)
        ALSource->Params.DryGains[i] = 0.0f;

    if(DupStereo == AL_FALSE)
    {
        ALSource->Params.DryGains[FRONT_LEFT]  = DryGain * ListenerGain;
        ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
    }
    else
    {
        switch(Format)
        {
        case AL_FORMAT_MONO8:
        case AL_FORMAT_MONO16:
        case AL_FORMAT_MONO_FLOAT32:
        case AL_FORMAT_STEREO8:
        case AL_FORMAT_STEREO16:
        case AL_FORMAT_STEREO_FLOAT32:
            ALSource->Params.DryGains[FRONT_LEFT]  = DryGain * ListenerGain;
            ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
            break;

        case AL_FORMAT_QUAD8:
        case AL_FORMAT_QUAD16:
        case AL_FORMAT_QUAD32:
        case AL_FORMAT_51CHN8:
        case AL_FORMAT_51CHN16:
        case AL_FORMAT_51CHN32:
            DryGain *= aluSqrt(2.0f/4.0f);
            ALSource->Params.DryGains[FRONT_LEFT]  = DryGain * ListenerGain;
            ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
            ALSource->Params.DryGains[BACK_LEFT]   = DryGain * ListenerGain;
            ALSource->Params.DryGains[BACK_RIGHT]  = DryGain * ListenerGain;
            break;

        case AL_FORMAT_61CHN8:
        case AL_FORMAT_61CHN16:
        case AL_FORMAT_61CHN32:
            DryGain *= aluSqrt(2.0f/4.0f);
            ALSource->Params.DryGains[FRONT_LEFT]  = DryGain * ListenerGain;
            ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
            ALSource->Params.DryGains[SIDE_LEFT]   = DryGain * ListenerGain;
            ALSource->Params.DryGains[SIDE_RIGHT]  = DryGain * ListenerGain;
            break;

        case AL_FORMAT_71CHN8:
        case AL_FORMAT_71CHN16:
        case AL_FORMAT_71CHN32:
            DryGain *= aluSqrt(2.0f/6.0f);
            ALSource->Params.DryGains[FRONT_LEFT]  = DryGain * ListenerGain;
            ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
            ALSource->Params.DryGains[BACK_LEFT]   = DryGain * ListenerGain;
            ALSource->Params.DryGains[BACK_RIGHT]  = DryGain * ListenerGain;
            ALSource->Params.DryGains[SIDE_LEFT]   = DryGain * ListenerGain;
            ALSource->Params.DryGains[SIDE_RIGHT]  = DryGain * ListenerGain;
            break;

        default:
            break;
        }
    }

    for(i = 0;i < NumSends;i++)
    {
        WetGain[i] = SourceVolume;
        WetGain[i] = __min(WetGain[i],MaxVolume);
        WetGain[i] = __max(WetGain[i],MinVolume);
        WetGainHF[i] = 1.0f;

        switch(ALSource->Send[i].WetFilter.type)
        {
            case AL_FILTER_LOWPASS:
                WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
                WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
                break;
        }

        ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
    }
    for(i = NumSends;i < MAX_SENDS;i++)
    {
        ALSource->Params.WetGains[i] = 0.0f;
        WetGainHF[i] = 1.0f;
    }

    /* Update filter coefficients. Calculations based on the I3DL2
     * spec. */
    cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);

    /* We use two chained one-pole filters, so we need to take the
     * square root of the squared gain, which is the same as the base
     * gain. */
    ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);

    for(i = 0;i < NumSends;i++)
    {
        /* We use a one-pole filter, so we need to take the squared gain */
        ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
        ALSource->Params.Send[i].iirFilter.coeff = a;
    }
}

ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
{
    const ALCdevice *Device = ALContext->Device;
    ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,OrigDist;
    ALfloat Direction[3],Position[3],SourceToListener[3];
    ALfloat Velocity[3],ListenerVel[3];
    ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
    ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
    ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound;
    ALbufferlistitem *BufferListItem;
    ALfloat Matrix[4][4];
    ALfloat flAttenuation, effectiveDist;
    ALfloat RoomAttenuation[MAX_SENDS];
    ALfloat MetersPerUnit;
    ALfloat RoomRolloff[MAX_SENDS];
    ALfloat DryGainHF = 1.0f;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALfloat DirGain, AmbientGain;
    const ALfloat *SpeakerGain;
    ALfloat Pitch;
    ALfloat length;
    ALuint Frequency;
    ALint NumSends;
    ALint pos, s, i;
    ALfloat cw;

    for(i = 0;i < MAX_SENDS;i++)
        WetGainHF[i] = 1.0f;

    //Get context properties
    DopplerFactor   = ALContext->DopplerFactor * ALSource->DopplerFactor;
    DopplerVelocity = ALContext->DopplerVelocity;
    flSpeedOfSound  = ALContext->flSpeedOfSound;
    NumSends        = Device->NumAuxSends;
    Frequency       = Device->Frequency;

    //Get listener properties
    ListenerGain = ALContext->Listener.Gain;
    MetersPerUnit = ALContext->Listener.MetersPerUnit;
    memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));

    //Get source properties
    SourceVolume = ALSource->flGain;
    memcpy(Position,  ALSource->vPosition,    sizeof(ALSource->vPosition));
    memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
    memcpy(Velocity,  ALSource->vVelocity,    sizeof(ALSource->vVelocity));
    MinVolume    = ALSource->flMinGain;
    MaxVolume    = ALSource->flMaxGain;
    MinDist      = ALSource->flRefDistance;
    MaxDist      = ALSource->flMaxDistance;
    Rolloff      = ALSource->flRollOffFactor;
    InnerAngle   = ALSource->flInnerAngle;
    OuterAngle   = ALSource->flOuterAngle;
    OuterGainHF  = ALSource->OuterGainHF;

    //1. Translate Listener to origin (convert to head relative)
    if(ALSource->bHeadRelative==AL_FALSE)
    {
        ALfloat U[3],V[3],N[3];

        // Build transform matrix
        memcpy(N, ALContext->Listener.Forward, sizeof(N));  // At-vector
        aluNormalize(N);  // Normalized At-vector
        memcpy(V, ALContext->Listener.Up, sizeof(V));  // Up-vector
        aluNormalize(V);  // Normalized Up-vector
        aluCrossproduct(N, V, U); // Right-vector
        aluNormalize(U);  // Normalized Right-vector
        Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
        Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
        Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
        Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] =  0.0f; Matrix[3][3] = 1.0f;

        // Translate position
        Position[0] -= ALContext->Listener.Position[0];
        Position[1] -= ALContext->Listener.Position[1];
        Position[2] -= ALContext->Listener.Position[2];

        // Transform source position and direction into listener space
        aluMatrixVector(Position, 1.0f, Matrix);
        aluMatrixVector(Direction, 0.0f, Matrix);
        // Transform source and listener velocity into listener space
        aluMatrixVector(Velocity, 0.0f, Matrix);
        aluMatrixVector(ListenerVel, 0.0f, Matrix);
    }
    else
        ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;

    SourceToListener[0] = -Position[0];
    SourceToListener[1] = -Position[1];
    SourceToListener[2] = -Position[2];
    aluNormalize(SourceToListener);
    aluNormalize(Direction);

    //2. Calculate distance attenuation
    Distance = aluSqrt(aluDotproduct(Position, Position));
    OrigDist = Distance;

    flAttenuation = 1.0f;
    for(i = 0;i < NumSends;i++)
    {
        RoomAttenuation[i] = 1.0f;

        RoomRolloff[i] = ALSource->RoomRolloffFactor;
        if(ALSource->Send[i].Slot &&
           (ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB ||
            ALSource->Send[i].Slot->effect.type == AL_EFFECT_EAXREVERB))
            RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
    }

    switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
                                            ALContext->DistanceModel)
    {
        case AL_INVERSE_DISTANCE_CLAMPED:
            Distance=__max(Distance,MinDist);
            Distance=__min(Distance,MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case AL_INVERSE_DISTANCE:
            if(MinDist > 0.0f)
            {
                if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
                    flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
                for(i = 0;i < NumSends;i++)
                {
                    if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
                        RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
                }
            }
            break;

        case AL_LINEAR_DISTANCE_CLAMPED:
            Distance=__max(Distance,MinDist);
            Distance=__min(Distance,MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case AL_LINEAR_DISTANCE:
            Distance=__min(Distance,MaxDist);
            if(MaxDist != MinDist)
            {
                flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
                for(i = 0;i < NumSends;i++)
                    RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
            }
            break;

        case AL_EXPONENT_DISTANCE_CLAMPED:
            Distance=__max(Distance,MinDist);
            Distance=__min(Distance,MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case AL_EXPONENT_DISTANCE:
            if(Distance > 0.0f && MinDist > 0.0f)
            {
                flAttenuation = aluPow(Distance/MinDist, -Rolloff);
                for(i = 0;i < NumSends;i++)
                    RoomAttenuation[i] = aluPow(Distance/MinDist, -RoomRolloff[i]);
            }
            break;

        case AL_NONE:
            break;
    }

    // Source Gain + Attenuation
    DryMix = SourceVolume * flAttenuation;
    for(i = 0;i < NumSends;i++)
        WetGain[i] = SourceVolume * RoomAttenuation[i];

    effectiveDist = 0.0f;
    if(MinDist > 0.0f)
        effectiveDist = (MinDist/flAttenuation - MinDist)*MetersPerUnit;

    // Distance-based air absorption
    if(ALSource->AirAbsorptionFactor > 0.0f && effectiveDist > 0.0f)
    {
        ALfloat absorb;

        // Absorption calculation is done in dB
        absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
                 effectiveDist;
        // Convert dB to linear gain before applying
        absorb = aluPow(10.0f, absorb/20.0f);

        DryGainHF *= absorb;
    }

    //3. Apply directional soundcones
    Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
    if(Angle >= InnerAngle && Angle <= OuterAngle)
    {
        ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
        ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
        ConeHF = (1.0f+(OuterGainHF-1.0f)*scale);
    }
    else if(Angle > OuterAngle)
    {
        ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
        ConeHF = (1.0f+(OuterGainHF-1.0f));
    }
    else
    {
        ConeVolume = 1.0f;
        ConeHF = 1.0f;
    }

    // Apply some high-frequency attenuation for sources behind the listener
    // NOTE: This should be aluDotproduct({0,0,-1}, ListenerToSource), however
    // that is equivalent to aluDotproduct({0,0,1}, SourceToListener), which is
    // the same as SourceToListener[2]
    Angle = aluAcos(SourceToListener[2]) * 180.0f/M_PI;
    // Sources within the minimum distance attenuate less
    if(OrigDist < MinDist)
        Angle *= OrigDist/MinDist;
    if(Angle > 90.0f)
    {
        ALfloat scale = (Angle-90.0f) / (180.1f-90.0f); // .1 to account for fp errors
        ConeHF *= 1.0f - (Device->HeadDampen*scale);
    }

    DryMix *= ConeVolume;
    if(ALSource->DryGainHFAuto)
        DryGainHF *= ConeHF;

    // Clamp to Min/Max Gain
    DryMix = __min(DryMix,MaxVolume);
    DryMix = __max(DryMix,MinVolume);

    for(i = 0;i < NumSends;i++)
    {
        ALeffectslot *Slot = ALSource->Send[i].Slot;

        if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
        {
            ALSource->Params.WetGains[i] = 0.0f;
            WetGainHF[i] = 1.0f;
            continue;
        }

        if(Slot->AuxSendAuto)
        {
            if(ALSource->WetGainAuto)
                WetGain[i] *= ConeVolume;
            if(ALSource->WetGainHFAuto)
                WetGainHF[i] *= ConeHF;

            // Clamp to Min/Max Gain
            WetGain[i] = __min(WetGain[i],MaxVolume);
            WetGain[i] = __max(WetGain[i],MinVolume);

            if(Slot->effect.type == AL_EFFECT_REVERB ||
               Slot->effect.type == AL_EFFECT_EAXREVERB)
            {
                /* Apply a decay-time transformation to the wet path, based on
                 * the attenuation of the dry path.
                 *
                 * Using the approximate (effective) source to listener
                 * distance, the initial decay of the reverb effect is
                 * calculated and applied to the wet path.
                 */
                WetGain[i] *= aluPow(10.0f, effectiveDist /
                                            (SPEEDOFSOUNDMETRESPERSEC *
                                             Slot->effect.Reverb.DecayTime) *
                                            -60.0 / 20.0);

                WetGainHF[i] *= aluPow(10.0f,
                                       log10(Slot->effect.Reverb.AirAbsorptionGainHF) *
                                       ALSource->AirAbsorptionFactor * effectiveDist);
            }
        }
        else
        {
            /* If the slot's auxiliary send auto is off, the data sent to the
             * effect slot is the same as the dry path, sans filter effects */
            WetGain[i] = DryMix;
            WetGainHF[i] = DryGainHF;
        }

        switch(ALSource->Send[i].WetFilter.type)
        {
            case AL_FILTER_LOWPASS:
                WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
                WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
                break;
        }
        ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
    }
    for(i = NumSends;i < MAX_SENDS;i++)
    {
        ALSource->Params.WetGains[i] = 0.0f;
        WetGainHF[i] = 1.0f;
    }

    // Apply filter gains and filters
    switch(ALSource->DirectFilter.type)
    {
        case AL_FILTER_LOWPASS:
            DryMix *= ALSource->DirectFilter.Gain;
            DryGainHF *= ALSource->DirectFilter.GainHF;
            break;
    }
    DryMix *= ListenerGain;

    // Calculate Velocity
    if(DopplerFactor != 0.0f)
    {
        ALfloat flVSS, flVLS;
        ALfloat flMaxVelocity = (DopplerVelocity * flSpeedOfSound) /
                                DopplerFactor;

        flVSS = aluDotproduct(Velocity, SourceToListener);
        if(flVSS >= flMaxVelocity)
            flVSS = (flMaxVelocity - 1.0f);
        else if(flVSS <= -flMaxVelocity)
            flVSS = -flMaxVelocity + 1.0f;

        flVLS = aluDotproduct(ListenerVel, SourceToListener);
        if(flVLS >= flMaxVelocity)
            flVLS = (flMaxVelocity - 1.0f);
        else if(flVLS <= -flMaxVelocity)
            flVLS = -flMaxVelocity + 1.0f;

        Pitch = ALSource->flPitch *
            ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
            ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
    }
    else
        Pitch = ALSource->flPitch;

    BufferListItem = ALSource->queue;
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            ALSource->Params.Pitch = Pitch*ALBuffer->frequency / Frequency;
            break;
        }
        BufferListItem = BufferListItem->next;
    }

    // Use energy-preserving panning algorithm for multi-speaker playback
    length = __max(OrigDist, MinDist);
    if(length > 0.0f)
    {
        ALfloat invlen = 1.0f/length;
        Position[0] *= invlen;
        Position[1] *= invlen;
        Position[2] *= invlen;
    }

    pos = aluCart2LUTpos(-Position[2], Position[0]);
    SpeakerGain = &Device->PanningLUT[OUTPUTCHANNELS * pos];

    DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
    // elevation adjustment for directional gain. this sucks, but
    // has low complexity
    AmbientGain = 1.0/aluSqrt(Device->NumChan) * (1.0-DirGain);
    for(s = 0;s < OUTPUTCHANNELS;s++)
        ALSource->Params.DryGains[s] = 0.0f;
    for(s = 0;s < (ALsizei)Device->NumChan;s++)
    {
        Channel chan = Device->Speaker2Chan[s];
        ALfloat gain = SpeakerGain[chan]*DirGain + AmbientGain;
        ALSource->Params.DryGains[chan] = DryMix * gain;
    }

    /* Update filter coefficients. */
    cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);

    /* Spatialized sources use four chained one-pole filters, so we need to
     * take the fourth root of the squared gain, which is the same as the
     * square root of the base gain. */
    ALSource->Params.iirFilter.coeff = lpCoeffCalc(aluSqrt(DryGainHF), cw);

    for(i = 0;i < NumSends;i++)
    {
        /* The wet path uses two chained one-pole filters, so take the
         * base gain (square root of the squared gain) */
        ALSource->Params.Send[i].iirFilter.coeff = lpCoeffCalc(WetGainHF[i], cw);
    }
}


ALvoid aluHandleDisconnect(ALCdevice *device)
{
    ALuint i;

    SuspendContext(NULL);
    for(i = 0;i < device->NumContexts;i++)
    {
        ALCcontext *Context = device->Contexts[i];
        ALsource *source;
        ALsizei pos;

        SuspendContext(Context);

        for(pos = 0;pos < Context->SourceMap.size;pos++)
        {
            source = Context->SourceMap.array[pos].value;
            if(source->state == AL_PLAYING)
            {
                source->state = AL_STOPPED;
                source->BuffersPlayed = source->BuffersInQueue;
                source->position = 0;
                source->position_fraction = 0;
            }
        }
        ProcessContext(Context);
    }

    device->Connected = ALC_FALSE;
    ProcessContext(NULL);
}