1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "AL/al.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alEcho.h"
#include "alu.h"
struct ALechoState {
ALfloat *SampleBuffer;
ALuint BufferLength;
// The echo is two tap. The third tap is the offset to write the feedback
// and input sample to
struct {
ALuint offset;
} Tap[3];
// The LR gains for the first tap. The second tap uses the reverse
ALfloat GainL;
ALfloat GainR;
ALfloat FeedGain;
FILTER iirFilter;
ALfloat history[2];
};
// Find the next power of 2. Actually, this will return the input value if
// it is already a power of 2.
static ALuint NextPowerOf2(ALuint value)
{
ALuint powerOf2 = 1;
if(value)
{
value--;
while(value)
{
value >>= 1;
powerOf2 <<= 1;
}
}
return powerOf2;
}
ALechoState *EchoCreate(ALCcontext *Context)
{
ALechoState *state;
ALuint i, maxlen;
state = malloc(sizeof(*state));
if(!state)
return NULL;
maxlen = (ALuint)(AL_ECHO_MAX_DELAY * Context->Frequency);
maxlen += (ALuint)(AL_ECHO_MAX_LRDELAY * Context->Frequency);
// Use the next power of 2 for the buffer length, so the tap offsets can be
// wrapped using a mask instead of a modulo
state->BufferLength = NextPowerOf2(maxlen+1);
state->SampleBuffer = malloc(state->BufferLength * sizeof(ALfloat));
if(!state->SampleBuffer)
{
free(state);
return NULL;
}
for(i = 0;i < state->BufferLength;i++)
state->SampleBuffer[i] = 0.0f;
state->Tap[0].offset = 0;
state->Tap[1].offset = 0;
state->Tap[2].offset = 0;
state->GainL = 0.0f;
state->GainR = 0.0f;
for(i = 0;i < sizeof(state->history)/sizeof(state->history[0]);i++)
state->history[i] = 0.0f;
state->iirFilter.coeff = 0.0f;
return state;
}
ALvoid EchoDestroy(ALechoState *state)
{
if(state)
{
free(state->SampleBuffer);
state->SampleBuffer = NULL;
free(state);
}
}
ALvoid EchoUpdate(ALCcontext *Context, struct ALeffectslot *Slot, ALeffect *Effect)
{
ALechoState *state = Slot->EchoState;
ALuint newdelay1, newdelay2;
ALfloat lrpan, cw, a, g;
newdelay1 = (ALuint)(Effect->Echo.Delay * Context->Frequency);
newdelay2 = (ALuint)(Effect->Echo.LRDelay * Context->Frequency);
state->Tap[0].offset = (state->BufferLength - newdelay1 - 1 +
state->Tap[2].offset)%state->BufferLength;
state->Tap[1].offset = (state->BufferLength - newdelay1 - newdelay2 - 1 +
state->Tap[2].offset)%state->BufferLength;
lrpan = Effect->Echo.Spread*0.5f + 0.5f;
state->GainL = aluSqrt( lrpan);
state->GainR = aluSqrt(1.0f-lrpan);
state->FeedGain = Effect->Echo.Feedback;
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Context->Frequency);
g = 1.0f - Effect->Echo.Damping;
a = 0.0f;
if(g < 0.9999f) // 1-epsilon
a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
state->iirFilter.coeff = a;
}
ALvoid EchoProcess(ALechoState *state, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
const ALuint delay = state->BufferLength-1;
ALuint tap1off = state->Tap[0].offset;
ALuint tap2off = state->Tap[1].offset;
ALuint fboff = state->Tap[2].offset;
ALfloat samp[2];
ALuint i;
for(i = 0;i < SamplesToDo;i++)
{
// Apply damping
samp[0] = lpFilter2P(&state->iirFilter, 0, state->SampleBuffer[tap2off]+SamplesIn[i]);
// Apply feedback gain and mix in the new sample
state->SampleBuffer[fboff] = samp[0] * state->FeedGain;
tap1off = (tap1off+1) & delay;
tap2off = (tap2off+1) & delay;
fboff = (fboff+1) & delay;
// Sample first tap
samp[0] = state->SampleBuffer[tap1off]*state->GainL;
samp[1] = state->SampleBuffer[tap1off]*state->GainR;
// Sample second tap. Reverse LR panning
samp[0] += state->SampleBuffer[tap2off]*state->GainR;
samp[1] += state->SampleBuffer[tap2off]*state->GainL;
SamplesOut[i][FRONT_LEFT] += samp[0];
SamplesOut[i][FRONT_RIGHT] += samp[1];
SamplesOut[i][SIDE_LEFT] += samp[0];
SamplesOut[i][SIDE_RIGHT] += samp[1];
SamplesOut[i][BACK_LEFT] += samp[0];
SamplesOut[i][BACK_RIGHT] += samp[1];
}
state->Tap[0].offset = tap1off;
state->Tap[1].offset = tap2off;
state->Tap[2].offset = fboff;
}
|