1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
|
/**
* Reverb for the OpenAL cross platform audio library
* Copyright (C) 2008-2009 by Christopher Fitzgerald.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alEffect.h"
#include "alu.h"
typedef struct DelayLine
{
// The delay lines use sample lengths that are powers of 2 to allow
// bitmasking instead of modulus wrapping.
ALuint Mask;
ALfloat *Line;
} DelayLine;
typedef struct ALverbState {
// Must be first in all effects!
ALeffectState state;
// All delay lines are allocated as a single buffer to reduce memory
// fragmentation and management code.
ALfloat *SampleBuffer;
// Master effect low-pass filter (2 chained 1-pole filters).
ALfloat LpCoeff;
ALfloat LpSamples[2];
// Initial effect delay and decorrelation.
DelayLine Delay;
// The tap points for the initial delay. First tap goes to early
// reflections, the last four decorrelate to late reverb.
ALuint Tap[5];
struct {
// Total gain for early reflections.
ALfloat Gain;
// Early reflections are done with 4 delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[OUTPUTCHANNELS];
} Early;
struct {
// Total gain for late reverb.
ALfloat Gain;
// Attenuation to compensate for modal density and decay rate.
ALfloat DensityGain;
// The feed-back and feed-forward all-pass coefficient.
ALfloat ApFeedCoeff;
// Mixing matrix coefficient.
ALfloat MixCoeff;
// Late reverb has 4 parallel all-pass filters.
ALfloat ApCoeff[4];
DelayLine ApDelay[4];
ALuint ApOffset[4];
// In addition to 4 cyclical delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
// The cyclical delay lines are 1-pole low-pass filtered.
ALfloat LpCoeff[4];
ALfloat LpSample[4];
// The gain for each output channel based on 3D panning.
ALfloat PanGain[OUTPUTCHANNELS];
} Late;
// The current read offset for all delay lines.
ALuint Offset;
} ALverbState;
// All delay line lengths are specified in seconds.
// The lengths of the early delay lines.
static const ALfloat EARLY_LINE_LENGTH[4] =
{
0.0015f, 0.0045f, 0.0135f, 0.0405f
};
// The lengths of the late all-pass delay lines.
static const ALfloat ALLPASS_LINE_LENGTH[4] =
{
0.0151f, 0.0167f, 0.0183f, 0.0200f,
};
// The lengths of the late cyclical delay lines.
static const ALfloat LATE_LINE_LENGTH[4] =
{
0.0211f, 0.0311f, 0.0461f, 0.0680f
};
// The late cyclical delay lines have a variable length dependent on the
// effect's density parameter (inverted for some reason) and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
// Input into the late reverb is decorrelated between four channels. Their
// timings are dependent on a fraction and multiplier. See VerbUpdate() for
// the calculations involved.
static const ALfloat DECO_FRACTION = 1.0f / 32.0f;
static const ALfloat DECO_MULTIPLIER = 2.0f;
// The maximum length of initial delay for the master delay line (a sum of
// the maximum early reflection and late reverb delays).
static const ALfloat MASTER_LINE_LENGTH = 0.3f + 0.1f;
// Find the next power of 2. Actually, this will return the input value if
// it is already a power of 2.
static ALuint NextPowerOf2(ALuint value)
{
ALuint powerOf2 = 1;
if(value)
{
value--;
while(value)
{
value >>= 1;
powerOf2 <<= 1;
}
}
return powerOf2;
}
// Basic delay line input/output routines.
static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
{
return Delay->Line[offset&Delay->Mask];
}
static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
{
Delay->Line[offset&Delay->Mask] = in;
}
// Delay line output routine for early reflections.
static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
{
return State->Early.Coeff[index] *
DelayLineOut(&State->Early.Delay[index],
State->Offset - State->Early.Offset[index]);
}
// Given an input sample, this function produces stereo output for early
// reflections.
static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
{
ALfloat d[4], v, f[4];
// Obtain the decayed results of each early delay line.
d[0] = EarlyDelayLineOut(State, 0);
d[1] = EarlyDelayLineOut(State, 1);
d[2] = EarlyDelayLineOut(State, 2);
d[3] = EarlyDelayLineOut(State, 3);
/* The following uses a lossless scattering junction from waveguide
* theory. It actually amounts to a householder mixing matrix, which
* will produce a maximally diffuse response, and means this can probably
* be considered a simple feedback delay network (FDN).
* N
* ---
* \
* v = 2/N / d_i
* ---
* i=1
*/
v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
// The junction is loaded with the input here.
v += in;
// Calculate the feed values for the delay lines.
f[0] = v - d[0];
f[1] = v - d[1];
f[2] = v - d[2];
f[3] = v - d[3];
// Refeed the delay lines.
DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
// Output the results of the junction for all four lines.
out[0] = State->Early.Gain * f[0];
out[1] = State->Early.Gain * f[1];
out[2] = State->Early.Gain * f[2];
out[3] = State->Early.Gain * f[3];
}
// All-pass input/output routine for late reverb.
static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
ALfloat out;
out = State->Late.ApCoeff[index] *
DelayLineOut(&State->Late.ApDelay[index],
State->Offset - State->Late.ApOffset[index]);
out -= (State->Late.ApFeedCoeff * in);
DelayLineIn(&State->Late.ApDelay[index], State->Offset,
(State->Late.ApFeedCoeff * out) + in);
return out;
}
// Delay line output routine for late reverb.
static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
{
return State->Late.Coeff[index] *
DelayLineOut(&State->Late.Delay[index],
State->Offset - State->Late.Offset[index]);
}
// Low-pass filter input/output routine for late reverb.
static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
State->Late.LpSample[index] = in +
((State->Late.LpSample[index] - in) * State->Late.LpCoeff[index]);
return State->Late.LpSample[index];
}
// Given four decorrelated input samples, this function produces stereo
// output for late reverb.
static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
{
ALfloat d[4], f[4];
// Obtain the decayed results of the cyclical delay lines, and add the
// corresponding input channels attenuated by density. Then pass the
// results through the low-pass filters.
d[0] = LateLowPassInOut(State, 0, (State->Late.DensityGain * in[0]) +
LateDelayLineOut(State, 0));
d[1] = LateLowPassInOut(State, 1, (State->Late.DensityGain * in[1]) +
LateDelayLineOut(State, 1));
d[2] = LateLowPassInOut(State, 2, (State->Late.DensityGain * in[2]) +
LateDelayLineOut(State, 2));
d[3] = LateLowPassInOut(State, 3, (State->Late.DensityGain * in[3]) +
LateDelayLineOut(State, 3));
// To help increase diffusion, run each line through an all-pass filter.
// The order of the all-pass filters is selected so that the shortest
// all-pass filter will feed the shortest delay line.
d[0] = LateAllPassInOut(State, 1, d[0]);
d[1] = LateAllPassInOut(State, 3, d[1]);
d[2] = LateAllPassInOut(State, 0, d[2]);
d[3] = LateAllPassInOut(State, 2, d[3]);
/* Late reverb is done with a modified feedback delay network (FDN)
* topology. Four input lines are each fed through their own all-pass
* filter and then into the mixing matrix. The four outputs of the
* mixing matrix are then cycled back to the inputs. Each output feeds
* a different input to form a circlular feed cycle.
*
* The mixing matrix used is a 4D skew-symmetric rotation matrix derived
* using a single unitary rotational parameter:
*
* [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
* [ -a, d, c, -b ]
* [ -b, -c, d, a ]
* [ -c, b, -a, d ]
*
* The rotation is constructed from the effect's diffusion parameter,
* yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
* with differing signs, and d is the coefficient x. The matrix is thus:
*
* [ x, y, -y, y ] x = 1 - (0.5 diffusion^3)
* [ -y, x, y, y ] y = sqrt((1 - x^2) / 3)
* [ y, -y, x, y ]
* [ -y, -y, -y, x ]
*
* To reduce the number of multiplies, the x coefficient is applied with
* the cyclical delay line coefficients. Thus only the y coefficient is
* applied when mixing, and is modified to be: y / x.
*/
f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
// Output the results of the matrix for all four cyclical delay lines,
// attenuated by the late reverb gain (which is attenuated by the 'x'
// mix coefficient).
out[0] = State->Late.Gain * f[0];
out[1] = State->Late.Gain * f[1];
out[2] = State->Late.Gain * f[2];
out[3] = State->Late.Gain * f[3];
// The delay lines are fed circularly in the order:
// 0 -> 1 -> 3 -> 2 -> 0 ...
DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
}
// Process the reverb for a given input sample, resulting in separate four-
// channel output for both early reflections and late reverb.
static __inline ALvoid ReverbInOut(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
{
ALfloat taps[4];
// Low-pass filter the incoming sample.
in = in + ((State->LpSamples[0] - in) * State->LpCoeff);
State->LpSamples[0] = in;
in = in + ((State->LpSamples[1] - in) * State->LpCoeff);
State->LpSamples[1] = in;
// Feed the initial delay line.
DelayLineIn(&State->Delay, State->Offset, in);
// Calculate the early reflection from the first delay tap.
in = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
EarlyReflection(State, in, early);
// Calculate the late reverb from the last four delay taps.
taps[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
taps[1] = DelayLineOut(&State->Delay, State->Offset - State->Tap[2]);
taps[2] = DelayLineOut(&State->Delay, State->Offset - State->Tap[3]);
taps[3] = DelayLineOut(&State->Delay, State->Offset - State->Tap[4]);
LateReverb(State, taps, late);
// Step all delays forward one sample.
State->Offset++;
}
// This destroys the reverb state. It should be called only when the effect
// slot has a different (or no) effect loaded over the reverb effect.
ALvoid VerbDestroy(ALeffectState *effect)
{
ALverbState *State = (ALverbState*)effect;
if(State)
{
free(State->SampleBuffer);
State->SampleBuffer = NULL;
free(State);
}
}
// NOTE: Temp, remove later.
static __inline ALint aluCart2LUTpos(ALfloat re, ALfloat im)
{
ALint pos = 0;
ALfloat denom = aluFabs(re) + aluFabs(im);
if(denom > 0.0f)
pos = (ALint)(QUADRANT_NUM*aluFabs(im) / denom + 0.5);
if(re < 0.0)
pos = 2 * QUADRANT_NUM - pos;
if(im < 0.0)
pos = LUT_NUM - pos;
return pos%LUT_NUM;
}
// This updates the reverb state. This is called any time the reverb effect
// is loaded into a slot.
ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, ALeffectslot *Slot, ALeffect *Effect)
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat length, mixCoeff, cw, g, coeff;
ALfloat hfRatio = Effect->Reverb.DecayHFRatio;
// Calculate the master low-pass filter (from the master effect HF gain).
cw = cos(2.0 * M_PI * Effect->Reverb.HFReference / Context->Frequency);
g = __max(Effect->Reverb.GainHF, 0.0001f);
State->LpCoeff = 0.0f;
if(g < 0.9999f) // 1-epsilon
State->LpCoeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
// Calculate the initial delay taps.
length = Effect->Reverb.ReflectionsDelay;
State->Tap[0] = (ALuint)(length * Context->Frequency);
length += Effect->Reverb.LateReverbDelay;
/* The four inputs to the late reverb are decorrelated to smooth the
* initial reverb and reduce harsh echos. The timings are calculated as
* multiples of a fraction of the smallest cyclical delay time. This
* result is then adjusted so that the first tap occurs immediately (all
* taps are reduced by the shortest fraction).
*
* offset[index] = ((FRACTION MULTIPLIER^index) - 1) delay
*/
for(index = 0;index < 4;index++)
{
length += LATE_LINE_LENGTH[0] *
(1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER)) *
(DECO_FRACTION * (pow(DECO_MULTIPLIER, (ALfloat)index) - 1.0f));
State->Tap[1 + index] = (ALuint)(length * Context->Frequency);
}
// Calculate the early reflections gain (from the slot gain, master
// effect gain, and reflections gain parameters).
State->Early.Gain = Effect->Reverb.Gain * Effect->Reverb.ReflectionsGain;
// Calculate the gain (coefficient) for each early delay line.
for(index = 0;index < 4;index++)
State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
Effect->Reverb.LateReverbDelay *
-60.0f / 20.0f);
// Calculate the first mixing matrix coefficient (x).
mixCoeff = 1.0f - (0.5f * pow(Effect->Reverb.Diffusion, 3.0f));
// Calculate the late reverb gain (from the slot gain, master effect
// gain, and late reverb gain parameters). Since the output is tapped
// prior to the application of the delay line coefficients, this gain
// needs to be attenuated by the 'x' mix coefficient from above.
State->Late.Gain = Effect->Reverb.Gain * Effect->Reverb.LateReverbGain * mixCoeff;
/* To compensate for changes in modal density and decay time of the late
* reverb signal, the input is attenuated based on the maximal energy of
* the outgoing signal. This is calculated as the ratio between a
* reference value and the current approximation of energy for the output
* signal.
*
* Reverb output matches exponential decay of the form Sum(a^n), where a
* is the attenuation coefficient, and n is the sample ranging from 0 to
* infinity. The signal energy can thus be approximated using the area
* under this curve, calculated as: 1 / (1 - a).
*
* The reference energy is calculated from a signal at the lowest (effect
* at 1.0) density with a decay time of one second.
*
* The coefficient is calculated as the average length of the cyclical
* delay lines. This produces a better result than calculating the gain
* for each line individually (most likely a side effect of diffusion).
*
* The final result is the square root of the ratio bound to a maximum
* value of 1 (no amplification).
*/
length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]);
g = length * (1.0f + LATE_LINE_MULTIPLIER) * 0.25f;
g = pow(10.0f, g * -60.0f / 20.0f);
g = 1.0f / (1.0f - (g * g));
length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER) * 0.25f;
length = pow(10.0f, length / Effect->Reverb.DecayTime * -60.0f / 20.0f);
length = 1.0f / (1.0f - (length * length));
State->Late.DensityGain = __min(aluSqrt(g / length), 1.0f);
// Calculate the all-pass feed-back and feed-forward coefficient.
State->Late.ApFeedCoeff = 0.6f * pow(Effect->Reverb.Diffusion, 3.0f);
// Calculate the mixing matrix coefficient (y / x).
g = aluSqrt((1.0f - (mixCoeff * mixCoeff)) / 3.0f);
State->Late.MixCoeff = g / mixCoeff;
for(index = 0;index < 4;index++)
{
// Calculate the gain (coefficient) for each all-pass line.
State->Late.ApCoeff[index] = pow(10.0f, ALLPASS_LINE_LENGTH[index] /
Effect->Reverb.DecayTime *
-60.0f / 20.0f);
}
// If the HF limit parameter is flagged, calculate an appropriate limit
// based on the air absorption parameter.
if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
{
ALfloat limitRatio;
// For each of the cyclical delays, find the attenuation due to air
// absorption in dB (converting delay time to meters using the speed
// of sound). Then reversing the decay equation, solve for HF ratio.
// The delay length is cancelled out of the equation, so it can be
// calculated once for all lines.
limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
SPEEDOFSOUNDMETRESPERSEC *
Effect->Reverb.DecayTime / -60.0f * 20.0f);
// Need to limit the result to a minimum of 0.1, just like the HF
// ratio parameter.
limitRatio = __max(limitRatio, 0.1f);
// Using the limit calculated above, apply the upper bound to the
// HF ratio.
hfRatio = __min(hfRatio, limitRatio);
}
// Calculate the low-pass filter frequency.
cw = cos(2.0f * M_PI * Effect->Reverb.HFReference / Context->Frequency);
for(index = 0;index < 4;index++)
{
// Calculate the length (in seconds) of each cyclical delay line.
length = LATE_LINE_LENGTH[index] * (1.0f + (Effect->Reverb.Density *
LATE_LINE_MULTIPLIER));
// Calculate the delay offset for the cyclical delay lines.
State->Late.Offset[index] = (ALuint)(length * Context->Frequency);
// Calculate the gain (coefficient) for each cyclical line.
State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
-60.0f / 20.0f);
// Eventually this should boost the high frequencies when the ratio
// exceeds 1.
coeff = 0.0f;
if (hfRatio < 1.0f)
{
// Calculate the decay equation for each low-pass filter.
g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
-60.0f / 20.0f) / State->Late.Coeff[index];
g = __max(g, 0.1f);
g *= g;
// Calculate the gain (coefficient) for each low-pass filter.
if(g < 0.9999f) // 1-epsilon
coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
// Very low decay times will produce minimal output, so apply an
// upper bound to the coefficient.
coeff = __min(coeff, 0.98f);
}
State->Late.LpCoeff[index] = coeff;
// Attenuate the cyclical line coefficients by the mixing coefficient
// (x).
State->Late.Coeff[index] *= mixCoeff;
}
// Calculate the 3D-panning gains for the early reflections and late
// reverb (for EAX mode).
{
ALfloat *earlyPan = Effect->Reverb.ReflectionsPan;
ALfloat *latePan = Effect->Reverb.LateReverbPan;
ALfloat *speakerGain, dirGain, ambientGain;
ALint pos;
// This code applies directional reverb just like the mixer applies
// directional sources. It diffuses the sound toward all speakers
// as the magnitude of the panning vector drops, which is only an
// approximation of the expansion of sound across the speakers from
// the panning direction.
pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
ambientGain = 1.0 / aluSqrt(Context->NumChan) * (1.0 - dirGain);
for(index = 0;index < OUTPUTCHANNELS;index++)
State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
pos = aluCart2LUTpos(latePan[2], latePan[0]);
speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
ambientGain = 1.0 / aluSqrt(Context->NumChan) * (1.0 - dirGain);
for(index = 0;index < OUTPUTCHANNELS;index++)
State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
}
}
// This processes the reverb state, given the input samples and an output
// buffer.
ALvoid VerbProcess(ALeffectState *effect, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat early[4], late[4], out[4];
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
ReverbInOut(State, SamplesIn[index], early, late);
// Mix early reflections and late reverb.
out[0] = early[0] + late[0];
out[1] = early[1] + late[1];
out[2] = early[2] + late[2];
out[3] = early[3] + late[3];
// Output the results.
SamplesOut[index][FRONT_LEFT] += out [0];
SamplesOut[index][FRONT_RIGHT] += out [1];
SamplesOut[index][FRONT_CENTER] += out [3];
SamplesOut[index][SIDE_LEFT] += out [0];
SamplesOut[index][SIDE_RIGHT] += out [1];
SamplesOut[index][BACK_LEFT] += out [0];
SamplesOut[index][BACK_RIGHT] += out [1];
SamplesOut[index][BACK_CENTER] += out [2];
}
}
// This processes the EAX reverb state, given the input samples and an output
// buffer.
ALvoid EAXVerbProcess(ALeffectState *effect, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
ALfloat early[4], late[4];
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
ReverbInOut(State, SamplesIn[index], early, late);
// Unfortunately, while the number and configuration of gains for
// panning adjust according to OUTPUTCHANNELS, the output from the
// reverb engine is not so scalable.
SamplesOut[index][FRONT_LEFT] +=
(State->Early.PanGain[FRONT_LEFT] * early[0]) +
(State->Late.PanGain[FRONT_LEFT] * late[0]);
SamplesOut[index][FRONT_RIGHT] +=
(State->Early.PanGain[FRONT_RIGHT] * early[1]) +
(State->Late.PanGain[FRONT_RIGHT] * late[1]);
SamplesOut[index][FRONT_CENTER] +=
(State->Early.PanGain[FRONT_CENTER] * early[3]) +
(State->Late.PanGain[FRONT_CENTER] * late[3]);
SamplesOut[index][SIDE_LEFT] +=
(State->Early.PanGain[SIDE_LEFT] * early[0]) +
(State->Late.PanGain[SIDE_LEFT] * late[0]);
SamplesOut[index][SIDE_RIGHT] +=
(State->Early.PanGain[SIDE_RIGHT] * early[1]) +
(State->Late.PanGain[SIDE_RIGHT] * late[1]);
SamplesOut[index][BACK_LEFT] +=
(State->Early.PanGain[BACK_LEFT] * early[0]) +
(State->Late.PanGain[BACK_LEFT] * late[0]);
SamplesOut[index][BACK_RIGHT] +=
(State->Early.PanGain[BACK_RIGHT] * early[1]) +
(State->Late.PanGain[BACK_RIGHT] * late[1]);
SamplesOut[index][BACK_CENTER] +=
(State->Early.PanGain[BACK_CENTER] * early[2]) +
(State->Late.PanGain[BACK_CENTER] * late[2]);
}
}
// This creates the reverb state. It should be called only when the reverb
// effect is loaded into a slot that doesn't already have a reverb effect.
ALeffectState *VerbCreate(ALCcontext *Context)
{
ALverbState *State = NULL;
ALuint samples, length[13], totalLength, index;
State = malloc(sizeof(ALverbState));
if(!State)
return NULL;
State->state.Destroy = VerbDestroy;
State->state.Update = VerbUpdate;
State->state.Process = VerbProcess;
// All line lengths are powers of 2, calculated from their lengths, with
// an additional sample in case of rounding errors.
// See VerbUpdate() for an explanation of the additional calculation
// added to the master line length.
samples = (ALuint)
((MASTER_LINE_LENGTH +
(LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER) *
(DECO_FRACTION * ((DECO_MULTIPLIER * DECO_MULTIPLIER *
DECO_MULTIPLIER) - 1.0f)))) *
Context->Frequency) + 1;
length[0] = NextPowerOf2(samples);
totalLength = length[0];
for(index = 0;index < 4;index++)
{
samples = (ALuint)(EARLY_LINE_LENGTH[index] * Context->Frequency) + 1;
length[1 + index] = NextPowerOf2(samples);
totalLength += length[1 + index];
}
for(index = 0;index < 4;index++)
{
samples = (ALuint)(ALLPASS_LINE_LENGTH[index] * Context->Frequency) + 1;
length[5 + index] = NextPowerOf2(samples);
totalLength += length[5 + index];
}
for(index = 0;index < 4;index++)
{
samples = (ALuint)(LATE_LINE_LENGTH[index] *
(1.0f + LATE_LINE_MULTIPLIER) * Context->Frequency) + 1;
length[9 + index] = NextPowerOf2(samples);
totalLength += length[9 + index];
}
// All lines share a single sample buffer and have their masks and start
// addresses calculated once.
State->SampleBuffer = malloc(totalLength * sizeof(ALfloat));
if(!State->SampleBuffer)
{
free(State);
return NULL;
}
for(index = 0; index < totalLength;index++)
State->SampleBuffer[index] = 0.0f;
State->LpCoeff = 0.0f;
State->LpSamples[0] = 0.0f;
State->LpSamples[1] = 0.0f;
State->Delay.Mask = length[0] - 1;
State->Delay.Line = &State->SampleBuffer[0];
totalLength = length[0];
State->Tap[0] = 0;
State->Tap[1] = 0;
State->Tap[2] = 0;
State->Tap[3] = 0;
State->Tap[4] = 0;
State->Early.Gain = 0.0f;
for(index = 0;index < 4;index++)
{
State->Early.Coeff[index] = 0.0f;
State->Early.Delay[index].Mask = length[1 + index] - 1;
State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[1 + index];
// The early delay lines have their read offsets calculated once.
State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
Context->Frequency);
}
State->Late.Gain = 0.0f;
State->Late.DensityGain = 0.0f;
State->Late.ApFeedCoeff = 0.0f;
State->Late.MixCoeff = 0.0f;
for(index = 0;index < 4;index++)
{
State->Late.ApCoeff[index] = 0.0f;
State->Late.ApDelay[index].Mask = length[5 + index] - 1;
State->Late.ApDelay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[5 + index];
// The late all-pass lines have their read offsets calculated once.
State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
Context->Frequency);
}
for(index = 0;index < 4;index++)
{
State->Late.Coeff[index] = 0.0f;
State->Late.Delay[index].Mask = length[9 + index] - 1;
State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
totalLength += length[9 + index];
State->Late.Offset[index] = 0;
State->Late.LpCoeff[index] = 0.0f;
State->Late.LpSample[index] = 0.0f;
}
// Panning is applied as an independent gain for each output channel.
for(index = 0;index < OUTPUTCHANNELS;index++)
{
State->Early.PanGain[index] = 0.0f;
State->Late.PanGain[index] = 0.0f;
}
State->Offset = 0;
return &State->state;
}
ALeffectState *EAXVerbCreate(ALCcontext *Context)
{
ALeffectState *State = VerbCreate(Context);
if(State) State->Process = EAXVerbProcess;
return State;
}
|