summaryrefslogtreecommitdiffstats
path: root/Alc/alcReverb.c
blob: 161eb28a532297220bcf1614e2456c926c429665 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/**
 * OpenAL cross platform audio library
 * Copyright (C) 2008 by Christopher Fitzgerald.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <math.h>
#include <stdlib.h>

#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alEffect.h"
#include "alReverb.h"

#ifdef HAVE_SQRTF
#define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
#else
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
#endif

// fixes for mingw32.
#if defined(max) && !defined(__max)
#define __max max
#endif
#if defined(min) && !defined(__min)
#define __min min
#endif

typedef struct DelayLine
{
    // The delay lines use lengths that are powers of 2 to allow bitmasking
    // instead of modulus wrapping.
    ALuint   Mask;
    ALfloat *Line;
} DelayLine;

struct ALverbState
{
    // All delay lines are allocated as a single buffer to reduce memory
    // fragmentation and teardown code.
    ALfloat  *SampleBuffer;
    // Master reverb gain.
    ALfloat   Gain;
    // Initial reverb delay.
    DelayLine Delay;
    // The tap points for the initial delay.  First tap goes to early
    // reflections, the second to late reverb.
    ALuint    Tap[2];
    struct {
        // Gain for early reflections.
        ALfloat   Gain;
        // Early reflections are done with 4 delay lines.
        ALfloat   Coeff[4];
        DelayLine Delay[4];
        ALuint    Offset[4];
    } Early;
    struct {
        // Gain for late reverb.
        ALfloat   Gain;
        // Diffusion of late reverb.
        ALfloat   Diffusion;
        // Late reverb is done with 8 delay lines.
        ALfloat   Coeff[8];
        DelayLine Delay[8];
        ALuint    Offset[8];
        // The input and last 4 delay lines are low-pass filtered.
        ALfloat   LpCoeff[5];
        ALfloat   LpSample[5];
    } Late;
    ALuint Offset;
};

// All delay line lengths are specified in seconds.

// The length of the initial delay line (a sum of the maximum delay before
// early reflections and late reverb; 0.3 + 0.1).
static const ALfloat MASTER_LINE_LENGTH = 0.4000f;

// The lengths of the early delay lines.
static const ALfloat EARLY_LINE_LENGTH[4] =
{
    0.0015f, 0.0045f, 0.0135f, 0.0405f
};

// The lengths of the late delay lines.
static const ALfloat LATE_LINE_LENGTH[8] =
{
    0.0015f, 0.0037f, 0.0093f, 0.0234f,
    0.0100f, 0.0150f, 0.0225f, 0.0337f
};

// The last 4 late delay lines have a variable length dependent on the effect
// density parameter and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 9.0f;

static ALuint NextPowerOf2(ALuint value)
{
    ALuint powerOf2 = 1;

    if(value)
    {
        value--;
        while(value)
        {
            value >>= 1;
            powerOf2 <<= 1;
        }
    }
    return powerOf2;
}

// Basic delay line input/output routines.
static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
{
    return Delay->Line[offset&Delay->Mask];
}

static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
{
    Delay->Line[offset&Delay->Mask] = in;
}

// Delay line output routine for early reflections.
static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
{
    return State->Early.Coeff[index] *
           DelayLineOut(&State->Early.Delay[index],
                        State->Offset - State->Early.Offset[index]);
}

// Given an input sample, this function produces a decorrelated stereo output
// for early reflections.
static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
{
    ALfloat d[4], v, f[4];

    // Obtain the decayed results of each early delay line.
    d[0] = EarlyDelayLineOut(State, 0);
    d[1] = EarlyDelayLineOut(State, 1);
    d[2] = EarlyDelayLineOut(State, 2);
    d[3] = EarlyDelayLineOut(State, 3);

    /* The following uses a lossless scattering junction from waveguide
     * theory.  It actually amounts to a householder mixing matrix, which
     * will produce a maximally diffuse response, and means this can probably
     * be considered a simple FDN.
     *          N
     *         ---
     *         \
     * v = 2/N /   di
     *         ---
     *         i=1
     */
    v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
    // The junction is loaded with the input here.
    v += in;

    // Calculate the feed values for the delay lines.
    f[0] = v - d[0];
    f[1] = v - d[1];
    f[2] = v - d[2];
    f[3] = v - d[3];

    // To increase reflection complexity (and help reduce coloration) the
    // delay lines cyclicly refeed themselves (0 -> 1 -> 3 -> 2 -> 0...).
    DelayLineIn(&State->Early.Delay[0], State->Offset, f[2]);
    DelayLineIn(&State->Early.Delay[1], State->Offset, f[0]);
    DelayLineIn(&State->Early.Delay[2], State->Offset, f[3]);
    DelayLineIn(&State->Early.Delay[3], State->Offset, f[1]);

    // To decorrelate the output for stereo separation, the cyclical nature
    // of the feed path is exploited.  The two outputs are obtained from the
    // inner delay lines.
    // Output is instant by using the inputs to them instead of taking the
    // result of the two delay lines directly (f[0] and f[3] instead of d[1]
    // and d[2]).
    out[0] = State->Early.Gain * f[0];
    out[1] = State->Early.Gain * f[3];
}

// Delay line output routine for late reverb.
static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
{
    return State->Late.Coeff[index] *
           DelayLineOut(&State->Late.Delay[index],
                        State->Offset - State->Late.Offset[index]);
}

// Low-pass filter input/output routine for late reverb.
static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
    State->Late.LpSample[index] = in + ((State->Late.LpSample[index] - in) *
                                        State->Late.LpCoeff[index]);
    return State->Late.LpSample[index];
}

// Given an input sample, this function produces a decorrelated stereo output
// for late reverb.
static __inline ALvoid LateReverb(ALverbState *State, ALfloat in, ALfloat *out)
{
    ALfloat din, d[8], v, dv, f[8];

    // Since the input will be sent directly to the output as in the early
    // reflections function, it needs to take into account some immediate
    // absorption.
    in = LateLowPassInOut(State, 0, in);

    // When diffusion is full, no input is directly passed to the variable-
    // length delay lines (the last 4).
    din = (1.0f - State->Late.Diffusion) * in;

    // Obtain the decayed results of the fixed-length delay lines.
    d[0] = LateDelayLineOut(State, 0);
    d[1] = LateDelayLineOut(State, 1);
    d[2] = LateDelayLineOut(State, 2);
    d[3] = LateDelayLineOut(State, 3);
    // Obtain the decayed and low-pass filtered results of the variable-
    // length delay lines.
    d[4] = LateLowPassInOut(State, 1, LateDelayLineOut(State, 4));
    d[5] = LateLowPassInOut(State, 2, LateDelayLineOut(State, 5));
    d[6] = LateLowPassInOut(State, 3, LateDelayLineOut(State, 6));
    d[7] = LateLowPassInOut(State, 4, LateDelayLineOut(State, 7));

    // The waveguide formula used in the early reflections function works
    // great for high diffusion, but it is not obviously paramerized to allow
    // a variable diffusion.  With only limited time and resources, what
    // follows is the best variation of that formula I could come up with.
    // First, there are 8 delay lines used.  The first 4 are fixed-length and
    // generate the highest density of the diffuse response.  The last 4 are
    // variable-length, and are used to smooth out the diffuse response.  The
    // density effect parameter alters their length.  The inner two delay
    // lines of each group have their signs reversed (more about this later).
    v = (d[0] - d[1] - d[2] + d[3] +
         d[4] - d[5] - d[6] + d[7]) * 0.25f;
    // Diffusion is applied as a reduction of the junction pressure for all
    // branches.  This presents two problems.  When the diffusion factor (0
    // to 1) reaches 0.5, the average feed value is reduced (the junction
    // becomes lossy).  Thus, at 0.5 the signal decays almost twice as fast
    // as it should.  The second problem is the introduction of some
    // resonant frequencies (coloration).  The reversed signs above are used
    // to help combat some of the coloration by adding variations along the
    // feed cycle.
    v *= State->Late.Diffusion;
    // Load the junction with the input.  To reduce the noticeable echo of
    // the longer delay lines (the variable-length ones) the input is loaded
    // with the inverse of the effect diffusion.  So at full diffusion, the
    // input is not applied to the last 4 delay lines.  Input signs reversed
    // to balance the equation.
    dv = v + din;
    v += in;

    // As with the reversed signs above, to balance the equation the signs
    // need to be reversed here, too.
    f[0] = d[0] - v;
    f[1] = d[1] + v;
    f[2] = d[2] + v;
    f[3] = d[3] - v;
    f[4] = d[4] - dv;
    f[5] = d[5] + dv;
    f[6] = d[6] + dv;
    f[7] = d[7] - dv;

    // Feed the fixed-length delay lines with their own cycle (0 -> 1 -> 3 ->
    // 2 -> 0...).
    DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
    DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
    DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
    DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
    // Feed the variable-length delay lines with their cycle (4 -> 6 -> 7 ->
    // 5 -> 4...).
    DelayLineIn(&State->Late.Delay[4], State->Offset, f[5]);
    DelayLineIn(&State->Late.Delay[5], State->Offset, f[7]);
    DelayLineIn(&State->Late.Delay[6], State->Offset, f[4]);
    DelayLineIn(&State->Late.Delay[7], State->Offset, f[6]);

    // Output is derived from the values fed to the inner two variable-length
    // delay lines (5 and 6).
    out[0] = State->Late.Gain * f[7];
    out[1] = State->Late.Gain * f[4];
}

// This creates the reverb state.  It should be called only when the reverb
// effect is loaded into a slot that doesn't already have a reverb effect.
ALverbState *VerbCreate(ALCcontext *Context)
{
    ALverbState *State = NULL;
    ALuint length[13], totalLength, index;

    State = malloc(sizeof(ALverbState));
    if(!State)
        return NULL;

    // All line lengths are powers of 2, calculated from the line timings and
    // the addition of an extra sample (for safety).
    length[0] = NextPowerOf2((ALuint)(MASTER_LINE_LENGTH*Context->Frequency) + 1);
    totalLength = length[0];
    for(index = 0;index < 4;index++)
    {
        length[1+index] = NextPowerOf2((ALuint)(EARLY_LINE_LENGTH[index]*Context->Frequency) + 1);
        totalLength += length[1+index];
    }
    for(index = 0;index < 4;index++)
    {
        length[5+index] = NextPowerOf2((ALuint)(LATE_LINE_LENGTH[index]*Context->Frequency) + 1);
        totalLength += length[5+index];
    }
    for(index = 4;index < 8;index++)
    {
        length[5+index] = NextPowerOf2((ALuint)(LATE_LINE_LENGTH[index]*(1.0f + LATE_LINE_MULTIPLIER)*Context->Frequency) + 1);
        totalLength += length[5+index];
    }

    // They all share a single sample buffer.
    State->SampleBuffer = malloc(totalLength * sizeof(ALfloat));
    if(!State->SampleBuffer)
    {
        free(State);
        return NULL;
    }
    for(index = 0; index < totalLength;index++)
        State->SampleBuffer[index] = 0.0f;

    // Each one has its mask and start address calculated one time.
    State->Gain = 0.0f;
    State->Delay.Mask = length[0] - 1;
    State->Delay.Line = &State->SampleBuffer[0];
    totalLength = length[0];

    State->Tap[0] = 0;
    State->Tap[1] = 0;

    State->Early.Gain = 0.0f;
    // All fixed-length delay lines have their read-write offsets calculated
    // one time.
    for(index = 0;index < 4;index++)
    {
        State->Early.Coeff[index] = 0.0f;
        State->Early.Delay[index].Mask = length[1 + index] - 1;
        State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
        totalLength += length[1 + index];

        State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] * Context->Frequency);
    }

    State->Late.Gain = 0.0f;
    State->Late.Diffusion = 0.0f;
    for(index = 0;index < 8;index++)
    {
        State->Late.Coeff[index] = 0.0f;
        State->Late.Delay[index].Mask = length[5 + index] - 1;
        State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
        totalLength += length[5 + index];

        State->Late.Offset[index] = 0;
        if(index < 4)
        {
            State->Late.Offset[index] = (ALuint)(LATE_LINE_LENGTH[index] * Context->Frequency);
            State->Late.LpCoeff[index] = 0.0f;
            State->Late.LpSample[index] = 0.0f;
        }
        else if(index == 4)
        {
            State->Late.LpCoeff[index] = 0.0f;
            State->Late.LpSample[index] = 0.0f;
        }
    }

    State->Offset = 0;
    return State;
}

// This destroys the reverb state.  It should be called only when the effect
// slot has a different (or no) effect loaded over the reverb effect.
ALvoid VerbDestroy(ALverbState *State)
{
    if(State)
    {
        free(State->SampleBuffer);
        State->SampleBuffer = NULL;
        free(State);
    }
}

// This updates the reverb state.  This is called any time the reverb effect
// is loaded into a slot.
ALvoid VerbUpdate(ALCcontext *Context, ALeffectslot *Slot, ALeffect *Effect)
{
    ALverbState *State = Slot->ReverbState;
    ALuint index, index2;
    ALfloat length, lpcoeff, cw, g;
    ALfloat hfRatio = Effect->Reverb.DecayHFRatio;

    // Calculate the master gain (from the slot and master reverb gain).
    State->Gain = Slot->Gain * Effect->Reverb.Gain;

    // Calculate the initial delay taps.
    length = Effect->Reverb.ReflectionsDelay;
    State->Tap[0] = (ALuint)(length * Context->Frequency);
    length += Effect->Reverb.LateReverbDelay;
    State->Tap[1] = (ALuint)(length * Context->Frequency);

    // Calculate the early reflections gain.  Right now this uses a gain of
    // 0.75 to compensate for the increase in density.  It should probably
    // use a power (RMS) based measurement from the resulting distribution of
    // early delay lines.
    State->Early.Gain = Effect->Reverb.ReflectionsGain * 0.75f;

    // Calculate the gain (coefficient) for each early delay line.
    for(index = 0;index < 4;index++)
        State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
                                               Effect->Reverb.LateReverbDelay *
                                               -60.0f / 20.0f);

    // Calculate the late reverb gain, adjusted by density, diffusion, and
    // decay time.  To be accurate, the adjustments should probably use power
    // measurements for each contribution, but they are not too bad as they
    // are.
    State->Late.Gain = Effect->Reverb.LateReverbGain *
                       (0.45f + (0.55f * Effect->Reverb.Density)) *
                       (1.0f - (0.25f * Effect->Reverb.Diffusion)) *
                       (1.0f - (0.025f * Effect->Reverb.DecayTime));
    State->Late.Diffusion = Effect->Reverb.Diffusion;

    // The EFX specification does not make it clear whether the air
    // absorption parameter should always take effect.  Both Generic Software
    // and Generic Hardware only apply it when HF limit is flagged, so that's
    // what is done here.
    // If the HF limit parameter is flagged, calculate an appropriate limit
    // based on the air absorption parameter.
    if(Effect->Reverb.DecayHFLimit)
    {
        ALfloat limitRatio;

        // The following is my best guess at how to limit the HF ratio by the
        // air absorption parameter.
        // For each of the last 4 delays, find the attenuation due to air
        // absorption in dB (converting delay time to meters using the speed
        // of sound).  Then reversing the decay equation, solve for HF ratio.
        // The delay length is cancelled out of the equation, so it can be
        // calculated once for all lines.
        limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
                             SPEEDOFSOUNDMETRESPERSEC*Effect->Reverb.DecayTime/
                             -60.0f * 20.0f);
        // Need to limit the result to a minimum of 0.1, just like the HF
        // ratio parameter.
        limitRatio = __max(limitRatio, 0.1f);

        // Using the limit calculated above, apply the upper bound to the
        // HF ratio.
        hfRatio = __min(hfRatio, limitRatio);
    }

    cw = cos(2.0f*3.141592654f * LOWPASSFREQCUTOFF / Context->Frequency);

    for(index = 0;index < 8;index++)
    {
        // Calculate the length (in seconds) of each delay line.
        length = LATE_LINE_LENGTH[index];
        if(index >= 4)
        {
            index2 = index - 3;

            length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER);

            // Calculate the delay offset for the variable-length delay
            // lines.
            State->Late.Offset[index] = (ALuint)(length * Context->Frequency);

            // Calculate the decay equation for each low-pass filter.
            g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
                           -60.0f / 20.0f);
            g  = __max(g, 0.1f);
            g *= g;
            // Calculate the gain (coefficient) for each low-pass filter.
            lpcoeff = 0.0f;
            if(g < 0.9999f) // 1-epsilon
                lpcoeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);

            // Very low decay times will produce minimal output, so apply an
            // upper bound to the coefficient.
            State->Late.LpCoeff[index2] = __min(lpcoeff, 0.98f);
        }

        // Calculate the gain (coefficient) for each line.
        State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
                                              -60.0f / 20.0f);
    }

    // This just calculates the coefficient for the late reverb input low-
    // pass filter.  It is calculated based the average (hence -30 instead
    // of -60) length of the inner two variable-length delay lines.
    length = LATE_LINE_LENGTH[5] * (1.0f + Effect->Reverb.Density * LATE_LINE_MULTIPLIER) +
             LATE_LINE_LENGTH[6] * (1.0f + Effect->Reverb.Density * LATE_LINE_MULTIPLIER);

    g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) * -30.0f / 20.0f);
    g  = __max(g, 0.1f);
    g *= g;

    lpcoeff = 0.0f;
    if(g < 0.9999f) // 1-epsilon
        lpcoeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);

    State->Late.LpCoeff[0] = __min(lpcoeff, 0.98f);
}

// This processes the reverb state, given the input samples and an output
// buffer.
ALvoid VerbProcess(ALverbState *State, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
    ALuint index;
    ALfloat in, early[2], late[2], out[2];

    for(index = 0;index < SamplesToDo;index++)
    {
        // Feed the initial delay line.
        DelayLineIn(&State->Delay, State->Offset, SamplesIn[index]);

        // Calculate the early reflection from the first delay tap.
        in = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
        EarlyReflection(State, in, early);

        // Calculate the late reverb from the second delay tap.
        in = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
        LateReverb(State, in, late);

        // Mix early reflections and late reverb.
        out[0] = State->Gain * (early[0] + late[0]);
        out[1] = State->Gain * (early[1] + late[1]);

        // Step all delays forward one sample.
        State->Offset++;

        // Output the results.
        SamplesOut[index][FRONT_LEFT]  += out[0];
        SamplesOut[index][FRONT_RIGHT] += out[1];
        SamplesOut[index][SIDE_LEFT]   += out[0];
        SamplesOut[index][SIDE_RIGHT]  += out[1];
        SamplesOut[index][BACK_LEFT]   += out[0];
        SamplesOut[index][BACK_RIGHT]  += out[1];
    }
}