summaryrefslogtreecommitdiffstats
path: root/Alc/alcReverb.c
blob: a2b888d962a4b13daed8d293fe4017b7df54531b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
/**
 * Reverb for the OpenAL cross platform audio library
 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alEffect.h"
#include "alError.h"
#include "alu.h"

typedef struct DelayLine
{
    // The delay lines use sample lengths that are powers of 2 to allow the
    // use of bit-masking instead of a modulus for wrapping.
    ALuint   Mask;
    ALfloat *Line;
} DelayLine;

typedef struct ALverbState {
    // Must be first in all effects!
    ALeffectState state;

    // All delay lines are allocated as a single buffer to reduce memory
    // fragmentation and management code.
    ALfloat  *SampleBuffer;
    ALuint    TotalSamples;
    // Master effect low-pass filter (2 chained 1-pole filters).
    FILTER    LpFilter;
    ALfloat   LpHistory[2];
    struct {
        // Modulator delay line.
        DelayLine Delay;
        // The vibrato time is tracked with an index over a modulus-wrapped
        // range (in samples).
        ALuint    Index;
        ALuint    Range;
        // The depth of frequency change (also in samples) and its filter.
        ALfloat   Depth;
        ALfloat   Coeff;
        ALfloat   Filter;
    } Mod;
    // Initial effect delay.
    DelayLine Delay;
    // The tap points for the initial delay.  First tap goes to early
    // reflections, the last to late reverb.
    ALuint    DelayTap[2];
    struct {
        // Output gain for early reflections.
        ALfloat   Gain;
        // Early reflections are done with 4 delay lines.
        ALfloat   Coeff[4];
        DelayLine Delay[4];
        ALuint    Offset[4];
        // The gain for each output channel based on 3D panning (only for the
        // EAX path).
        ALfloat   PanGain[OUTPUTCHANNELS];
    } Early;
    // Decorrelator delay line.
    DelayLine Decorrelator;
    // There are actually 4 decorrelator taps, but the first occurs at the
    // initial sample.
    ALuint    DecoTap[3];
    struct {
        // Output gain for late reverb.
        ALfloat   Gain;
        // Attenuation to compensate for the modal density and decay rate of
        // the late lines.
        ALfloat   DensityGain;
        // The feed-back and feed-forward all-pass coefficient.
        ALfloat   ApFeedCoeff;
        // Mixing matrix coefficient.
        ALfloat   MixCoeff;
        // Late reverb has 4 parallel all-pass filters.
        ALfloat   ApCoeff[4];
        DelayLine ApDelay[4];
        ALuint    ApOffset[4];
        // In addition to 4 cyclical delay lines.
        ALfloat   Coeff[4];
        DelayLine Delay[4];
        ALuint    Offset[4];
        // The cyclical delay lines are 1-pole low-pass filtered.
        ALfloat   LpCoeff[4];
        ALfloat   LpSample[4];
        // The gain for each output channel based on 3D panning (only for the
        // EAX path).
        ALfloat   PanGain[OUTPUTCHANNELS];
    } Late;
    struct {
        // Attenuation to compensate for the modal density and decay rate of
        // the echo line.
        ALfloat   DensityGain;
        // Echo delay and all-pass lines.
        DelayLine Delay;
        DelayLine ApDelay;
        ALfloat   Coeff;
        ALfloat   ApFeedCoeff;
        ALfloat   ApCoeff;
        ALuint    Offset;
        ALuint    ApOffset;
        // The echo line is 1-pole low-pass filtered.
        ALfloat   LpCoeff;
        ALfloat   LpSample;
        // Echo mixing coefficients.
        ALfloat   MixCoeff[2];
    } Echo;
    // The current read offset for all delay lines.
    ALuint Offset;
} ALverbState;

/* This coefficient is used to define the maximum frequency range controlled
 * by the modulation depth.  The current value of 0.1 will allow it to swing
 * from 0.9x to 1.1x.  This value must be below 1.  At 1 it will cause the
 * sampler to stall on the downswing, and above 1 it will cause it to sample
 * backwards.
 */
static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;

/* A filter is used to avoid the terrible distortion caused by changing
 * modulation time and/or depth.  To be consistent across different sample
 * rates, the coefficient must be raised to a constant divided by the sample
 * rate:  coeff^(constant / rate).
 */
static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
static const ALfloat MODULATION_FILTER_CONST = 100000.0f;

// When diffusion is above 0, an all-pass filter is used to take the edge off
// the echo effect.  It uses the following line length (in seconds).
static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;

// Input into the late reverb is decorrelated between four channels.  Their
// timings are dependent on a fraction and multiplier.  See the
// UpdateDecorrelator() routine for the calculations involved.
static const ALfloat DECO_FRACTION = 0.15f;
static const ALfloat DECO_MULTIPLIER = 2.0f;

// All delay line lengths are specified in seconds.

// The lengths of the early delay lines.
static const ALfloat EARLY_LINE_LENGTH[4] =
{
    0.0015f, 0.0045f, 0.0135f, 0.0405f
};

// The lengths of the late all-pass delay lines.
static const ALfloat ALLPASS_LINE_LENGTH[4] =
{
    0.0151f, 0.0167f, 0.0183f, 0.0200f,
};

// The lengths of the late cyclical delay lines.
static const ALfloat LATE_LINE_LENGTH[4] =
{
    0.0211f, 0.0311f, 0.0461f, 0.0680f
};

// The late cyclical delay lines have a variable length dependent on the
// effect's density parameter (inverted for some reason) and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;

// Calculate the length of a delay line and store its mask and offset.
static ALuint CalcLineLength(ALfloat length, ALuint offset, ALuint frequency, DelayLine *Delay)
{
    ALuint samples;

    // All line lengths are powers of 2, calculated from their lengths, with
    // an additional sample in case of rounding errors.
    samples = NextPowerOf2((ALuint)(length * frequency) + 1);
    // All lines share a single sample buffer.
    Delay->Mask = samples - 1;
    Delay->Line = (ALfloat*)offset;
    // Return the sample count for accumulation.
    return samples;
}

// Given the allocated sample buffer, this function updates each delay line
// offset.
static __inline ALvoid RealizeLineOffset(ALfloat * sampleBuffer, DelayLine *Delay)
{
    Delay->Line = &sampleBuffer[(ALuint)Delay->Line];
}

/* Calculates the delay line metrics and allocates the shared sample buffer
 * for all lines given a flag indicating whether or not to allocate the EAX-
 * related delays (eaxFlag) and the sample rate (frequency).  If an
 * allocation failure occurs, it returns AL_FALSE.
 */
static ALboolean AllocLines(ALboolean eaxFlag, ALuint frequency, ALverbState *State)
{
    ALuint totalSamples, index;
    ALfloat length;
    ALfloat *newBuffer = NULL;

    // All delay line lengths are calculated to accomodate the full range of
    // lengths given their respective paramters.
    totalSamples = 0;
    if(eaxFlag)
    {
        /* The modulator's line length is calculated from the maximum
         * modulation time and depth coefficient, and halfed for the low-to-
         * high frequency swing.  An additional sample is added to keep it
         * stable when there is no modulation.
         */
        length = (AL_EAXREVERB_MAX_MODULATION_TIME * MODULATION_DEPTH_COEFF /
                  2.0f) + (1.0f / frequency);
        totalSamples += CalcLineLength(length, totalSamples, frequency,
                                       &State->Mod.Delay);
    }

    // The initial delay is the sum of the reflections and late reverb
    // delays.
    if(eaxFlag)
        length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
                 AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
    else
        length = AL_REVERB_MAX_REFLECTIONS_DELAY +
                 AL_REVERB_MAX_LATE_REVERB_DELAY;
    totalSamples += CalcLineLength(length, totalSamples, frequency,
                                   &State->Delay);

    // The early reflection lines.
    for(index = 0;index < 4;index++)
        totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
                                       frequency, &State->Early.Delay[index]);

    // The decorrelator line is calculated from the lowest reverb density (a
    // parameter value of 1).
    length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
             LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
    totalSamples += CalcLineLength(length, totalSamples, frequency,
                                   &State->Decorrelator);

    // The late all-pass lines.
    for(index = 0;index < 4;index++)
        totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
                                       frequency, &State->Late.ApDelay[index]);

    // The late delay lines are calculated from the lowest reverb density.
    for(index = 0;index < 4;index++)
    {
        length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
        totalSamples += CalcLineLength(length, totalSamples, frequency,
                                       &State->Late.Delay[index]);
    }

    if(eaxFlag)
    {
        // The echo all-pass and delay lines.
        totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
                                       frequency, &State->Echo.ApDelay);
        totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
                                       frequency, &State->Echo.Delay);
    }

    if(totalSamples != State->TotalSamples)
    {
        newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
        if(newBuffer == NULL)
            return AL_FALSE;
        State->SampleBuffer = newBuffer;
        State->TotalSamples = totalSamples;
    }

    // Update all delays to reflect the new sample buffer.
    RealizeLineOffset(State->SampleBuffer, &State->Delay);
    RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
    for(index = 0;index < 4;index++)
    {
        RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
        RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
        RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
    }
    if(eaxFlag)
    {
        RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
        RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
        RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
    }

    // Clear the sample buffer.
    for(index = 0;index < State->TotalSamples;index++)
        State->SampleBuffer[index] = 0.0f;

    return AL_TRUE;
}

// Calculate a decay coefficient given the length of each cycle and the time
// until the decay reaches -60 dB.
static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
{
    return aluPow(10.0f, length / decayTime * -60.0f / 20.0f);
}

// Calculate a decay length from a coefficient and the time until the decay
// reaches -60 dB.
static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
{
    return log10(coeff) / -60.0 * 20.0f * decayTime;
}

// Calculate the high frequency parameter for the I3DL2 coefficient
// calculation.
static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency)
{
    return cos(2.0f * M_PI * hfRef / frequency);
}

// Calculate an attenuation to be applied to the input of any echo models to
// compensate for modal density and decay time.
static __inline ALfloat CalcDensityGain(ALfloat a)
{
    /* The energy of a signal can be obtained by finding the area under the
     * squared signal.  This takes the form of Sum(x_n^2), where x is the
     * amplitude for the sample n.
     *
     * Decaying feedback matches exponential decay of the form Sum(a^n),
     * where a is the attenuation coefficient, and n is the sample.  The area
     * under this decay curve can be calculated as:  1 / (1 - a).
     *
     * Modifying the above equation to find the squared area under the curve
     * (for energy) yields:  1 / (1 - a^2).  Input attenuation can then be
     * calculated by inverting the square root of this approximation,
     * yielding:  1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
     */
    return aluSqrt(1.0f - (a * a));
}

// Calculate the mixing matrix coefficients given a diffusion factor.
static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
{
    ALfloat n, t;

    // The matrix is of order 4, so n is sqrt (4 - 1).
    n = aluSqrt(3.0f);
    t = diffusion * atan(n);

    // Calculate the first mixing matrix coefficient.
    *x = cos(t);
    // Calculate the second mixing matrix coefficient.
    *y = sin(t) / n;
}

// Calculate the limited HF ratio for use with the late reverb low-pass
// filters.
static __inline ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
{
    ALfloat limitRatio;

    /* Find the attenuation due to air absorption in dB (converting delay
     * time to meters using the speed of sound).  Then reversing the decay
     * equation, solve for HF ratio.  The delay length is cancelled out of
     * the equation, so it can be calculated once for all lines.
     */
    limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
                         SPEEDOFSOUNDMETRESPERSEC);
    // Need to limit the result to a minimum of 0.1, just like the HF ratio
    // parameter.
    limitRatio = __max(limitRatio, 0.1f);

    // Using the limit calculated above, apply the upper bound to the HF
    // ratio.
    return __min(hfRatio, limitRatio);
}

// Calculate the coefficient for a HF (and eventually LF) decay damping
// filter.
static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
{
    ALfloat coeff, g;

    // Eventually this should boost the high frequencies when the ratio
    // exceeds 1.
    coeff = 0.0f;
    if (hfRatio < 1.0f)
    {
        // Calculate the low-pass coefficient by dividing the HF decay
        // coefficient by the full decay coefficient.
        g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;

        // Damping is done with a 1-pole filter, so g needs to be squared.
        g *= g;
        coeff = lpCoeffCalc(g, cw);

        // Very low decay times will produce minimal output, so apply an
        // upper bound to the coefficient.
        coeff = __min(coeff, 0.98f);
    }
    return coeff;
}

// Update the EAX modulation index, range, and depth.  Keep in mind that this
// kind of vibrato is additive and not multiplicative as one may expect.  The
// downswing will sound stronger than the upswing.
static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALverbState *State)
{
    ALfloat length;

    /* Modulation is calculated in two parts.
     *
     * The modulation time effects the sinus applied to the change in
     * frequency.  An index out of the current time range (both in samples)
     * is incremented each sample.  The range is bound to a reasonable
     * minimum (1 sample) and when the timing changes, the index is rescaled
     * to the new range (to keep the sinus consistent).
     */
    length = modTime * frequency;
    if (length >= 1.0f) {
       State->Mod.Index = (ALuint)(State->Mod.Index * length /
                                   State->Mod.Range);
       State->Mod.Range = (ALuint)length;
    } else {
       State->Mod.Index = 0;
       State->Mod.Range = 1;
    }

    /* The modulation depth effects the amount of frequency change over the
     * range of the sinus.  It needs to be scaled by the modulation time so
     * that a given depth produces a consistent change in frequency over all
     * ranges of time.  Since the depth is applied to a sinus value, it needs
     * to be halfed once for the sinus range and again for the sinus swing
     * in time (half of it is spent decreasing the frequency, half is spent
     * increasing it).
     */
    State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
                       2.0f * frequency;
}

// Update the offsets for the initial effect delay line.
static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALverbState *State)
{
    // Calculate the initial delay taps.
    State->DelayTap[0] = (ALuint)(earlyDelay * frequency);
    State->DelayTap[1] = (ALuint)((earlyDelay + lateDelay) * frequency);
}

// Update the early reflections gain and line coefficients.
static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALverbState *State)
{
    ALuint index;

    // Calculate the early reflections gain (from the master effect gain, and
    // reflections gain parameters) with a constant attenuation of 0.5.
    State->Early.Gain = 0.5f * reverbGain * earlyGain;

    // Calculate the gain (coefficient) for each early delay line using the
    // late delay time.  This expands the early reflections to the start of
    // the late reverb.
    for(index = 0;index < 4;index++)
        State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
                                                   lateDelay);
}

// Update the offsets for the decorrelator line.
static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALverbState *State)
{
    ALuint index;
    ALfloat length;

    /* The late reverb inputs are decorrelated to smooth the reverb tail and
     * reduce harsh echos.  The first tap occurs immediately, while the
     * remaining taps are delayed by multiples of a fraction of the smallest
     * cyclical delay time.
     *
     * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
     */
    for(index = 0;index < 3;index++)
    {
        length = (DECO_FRACTION * aluPow(DECO_MULTIPLIER, (ALfloat)index)) *
                 LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
        State->DecoTap[index] = (ALuint)(length * frequency);
    }
}

// Update the late reverb gains, line lengths, and line coefficients.
static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
{
    ALfloat length;
    ALuint index;

    /* Calculate the late reverb gain (from the master effect gain, and late
     * reverb gain parameters).  Since the output is tapped prior to the
     * application of the next delay line coefficients, this gain needs to be
     * attenuated by the 'x' mixing matrix coefficient as well.
     */
    State->Late.Gain = reverbGain * lateGain * xMix;

    /* To compensate for changes in modal density and decay time of the late
     * reverb signal, the input is attenuated based on the maximal energy of
     * the outgoing signal.  This approximation is used to keep the apparent
     * energy of the signal equal for all ranges of density and decay time.
     *
     * The average length of the cyclcical delay lines is used to calculate
     * the attenuation coefficient.
     */
    length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
              LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
    length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
    State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length,
                                                             decayTime));

    // Calculate the all-pass feed-back and feed-forward coefficient.
    State->Late.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f);

    for(index = 0;index < 4;index++)
    {
        // Calculate the gain (coefficient) for each all-pass line.
        State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index],
                                                    decayTime);

        // Calculate the length (in seconds) of each cyclical delay line.
        length = LATE_LINE_LENGTH[index] * (1.0f + (density *
                                                    LATE_LINE_MULTIPLIER));

        // Calculate the delay offset for each cyclical delay line.
        State->Late.Offset[index] = (ALuint)(length * frequency);

        // Calculate the gain (coefficient) for each cyclical line.
        State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);

        // Calculate the damping coefficient for each low-pass filter.
        State->Late.LpCoeff[index] =
            CalcDampingCoeff(hfRatio, length, decayTime,
                             State->Late.Coeff[index], cw);

        // Attenuate the cyclical line coefficients by the mixing coefficient
        // (x).
        State->Late.Coeff[index] *= xMix;
    }
}

// Update the echo gain, line offset, line coefficients, and mixing
// coefficients.
static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
{
    // Update the offset and coefficient for the echo delay line.
    State->Echo.Offset = (ALuint)(echoTime * frequency);

    // Calculate the decay coefficient for the echo line.
    State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);

    // Calculate the energy-based attenuation coefficient for the echo delay
    // line.
    State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);

    // Calculate the echo all-pass feed coefficient.
    State->Echo.ApFeedCoeff = 0.5f * aluPow(diffusion, 2.0f);

    // Calculate the echo all-pass attenuation coefficient.
    State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);

    // Calculate the damping coefficient for each low-pass filter.
    State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
                                           State->Echo.Coeff, cw);

    /* Calculate the echo mixing coefficients.  The first is applied to the
     * echo itself.  The second is used to attenuate the late reverb when
     * echo depth is high and diffusion is low, so the echo is slightly
     * stronger than the decorrelated echos in the reverb tail.
     */
    State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth;
    State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion));
}

// Update the early and late 3D panning gains.
static ALvoid Update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat *PanningLUT, ALverbState *State)
{
    ALfloat length;
    ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1],
                            ReflectionsPan[2] };
    ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1],
                           LateReverbPan[2] };
    ALint pos;
    ALfloat *speakerGain, dirGain, ambientGain;
    ALuint index;

    // Calculate the 3D-panning gains for the early reflections and late
    // reverb.
    length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
    if(length > 1.0f)
    {
        length = 1.0f / aluSqrt(length);
        earlyPan[0] *= length;
        earlyPan[1] *= length;
        earlyPan[2] *= length;
    }
    length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
    if(length > 1.0f)
    {
        length = 1.0f / aluSqrt(length);
        latePan[0] *= length;
        latePan[1] *= length;
        latePan[2] *= length;
    }

    /* This code applies directional reverb just like the mixer applies
     * directional sources.  It diffuses the sound toward all speakers as the
     * magnitude of the panning vector drops, which is only a rough
     * approximation of the expansion of sound across the speakers from the
     * panning direction.
     */
    pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
    speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
    dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
    ambientGain = (1.0 - dirGain);
    for(index = 0;index < OUTPUTCHANNELS;index++)
         State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;

    pos = aluCart2LUTpos(latePan[2], latePan[0]);
    speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
    dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
    ambientGain = (1.0 - dirGain);
    for(index = 0;index < OUTPUTCHANNELS;index++)
         State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
}

// Basic delay line input/output routines.
static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
{
    return Delay->Line[offset&Delay->Mask];
}

static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
{
    Delay->Line[offset&Delay->Mask] = in;
}

// Attenuated delay line output routine.
static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff)
{
    return coeff * Delay->Line[offset&Delay->Mask];
}

// Basic attenuated all-pass input/output routine.
static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
{
    ALfloat out, feed;

    out = DelayLineOut(Delay, outOffset);
    feed = feedCoeff * in;
    DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);

    // The time-based attenuation is only applied to the delay output to
    // keep it from affecting the feed-back path (which is already controlled
    // by the all-pass feed coefficient).
    return (coeff * out) - feed;
}

// Given an input sample, this function produces modulation for the late
// reverb.
static __inline ALfloat EAXModulation(ALverbState *State, ALfloat in)
{
    ALfloat sinus, frac;
    ALuint offset;
    ALfloat out0, out1;

    // Calculate the sinus rythm (dependent on modulation time and the
    // sampling rate).  The center of the sinus is moved to reduce the delay
    // of the effect when the time or depth are low.
    sinus = 1.0f - cos(2.0f * M_PI * State->Mod.Index / State->Mod.Range);

    // The depth determines the range over which to read the input samples
    // from, so it must be filtered to reduce the distortion caused by even
    // small parameter changes.
    State->Mod.Filter += (State->Mod.Depth - State->Mod.Filter) *
                         State->Mod.Coeff;

    // Calculate the read offset and fraction between it and the next sample.
    frac   = (1.0f + (State->Mod.Filter * sinus));
    offset = (ALuint)frac;
    frac  -= offset;

    // Get the two samples crossed by the offset, and feed the delay line
    // with the next input sample.
    out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset);
    out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1);
    DelayLineIn(&State->Mod.Delay, State->Offset, in);

    // Step the modulation index forward, keeping it bound to its range.
    State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;

    // The output is obtained by linearly interpolating the two samples that
    // were acquired above.
    return out0 + ((out1 - out0) * frac);
}

// Delay line output routine for early reflections.
static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
{
    return AttenuatedDelayLineOut(&State->Early.Delay[index],
                                  State->Offset - State->Early.Offset[index],
                                  State->Early.Coeff[index]);
}

// Given an input sample, this function produces four-channel output for the
// early reflections.
static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
{
    ALfloat d[4], v, f[4];

    // Obtain the decayed results of each early delay line.
    d[0] = EarlyDelayLineOut(State, 0);
    d[1] = EarlyDelayLineOut(State, 1);
    d[2] = EarlyDelayLineOut(State, 2);
    d[3] = EarlyDelayLineOut(State, 3);

    /* The following uses a lossless scattering junction from waveguide
     * theory.  It actually amounts to a householder mixing matrix, which
     * will produce a maximally diffuse response, and means this can probably
     * be considered a simple feed-back delay network (FDN).
     *          N
     *         ---
     *         \
     * v = 2/N /   d_i
     *         ---
     *         i=1
     */
    v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
    // The junction is loaded with the input here.
    v += in;

    // Calculate the feed values for the delay lines.
    f[0] = v - d[0];
    f[1] = v - d[1];
    f[2] = v - d[2];
    f[3] = v - d[3];

    // Re-feed the delay lines.
    DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
    DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
    DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
    DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);

    // Output the results of the junction for all four channels.
    out[0] = State->Early.Gain * f[0];
    out[1] = State->Early.Gain * f[1];
    out[2] = State->Early.Gain * f[2];
    out[3] = State->Early.Gain * f[3];
}

// All-pass input/output routine for late reverb.
static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
    return AllpassInOut(&State->Late.ApDelay[index],
                        State->Offset - State->Late.ApOffset[index],
                        State->Offset, in, State->Late.ApFeedCoeff,
                        State->Late.ApCoeff[index]);
}

// Delay line output routine for late reverb.
static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
{
    return AttenuatedDelayLineOut(&State->Late.Delay[index],
                                  State->Offset - State->Late.Offset[index],
                                  State->Late.Coeff[index]);
}

// Low-pass filter input/output routine for late reverb.
static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
    State->Late.LpSample[index] = in +
        ((State->Late.LpSample[index] - in) * State->Late.LpCoeff[index]);
    return State->Late.LpSample[index];
}

// Given four decorrelated input samples, this function produces four-channel
// output for the late reverb.
static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
{
    ALfloat d[4], f[4];

    // Obtain the decayed results of the cyclical delay lines, and add the
    // corresponding input channels.  Then pass the results through the
    // low-pass filters.

    // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
    // to 0.
    d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2));
    d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0));
    d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3));
    d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1));

    // To help increase diffusion, run each line through an all-pass filter.
    // When there is no diffusion, the shortest all-pass filter will feed the
    // shortest delay line.
    d[0] = LateAllPassInOut(State, 0, d[0]);
    d[1] = LateAllPassInOut(State, 1, d[1]);
    d[2] = LateAllPassInOut(State, 2, d[2]);
    d[3] = LateAllPassInOut(State, 3, d[3]);

    /* Late reverb is done with a modified feed-back delay network (FDN)
     * topology.  Four input lines are each fed through their own all-pass
     * filter and then into the mixing matrix.  The four outputs of the
     * mixing matrix are then cycled back to the inputs.  Each output feeds
     * a different input to form a circlular feed cycle.
     *
     * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
     * using a single unitary rotational parameter:
     *
     *  [  d,  a,  b,  c ]          1 = a^2 + b^2 + c^2 + d^2
     *  [ -a,  d,  c, -b ]
     *  [ -b, -c,  d,  a ]
     *  [ -c,  b, -a,  d ]
     *
     * The rotation is constructed from the effect's diffusion parameter,
     * yielding:  1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
     * with differing signs, and d is the coefficient x.  The matrix is thus:
     *
     *  [  x,  y, -y,  y ]          n = sqrt(matrix_order - 1)
     *  [ -y,  x,  y,  y ]          t = diffusion_parameter * atan(n)
     *  [  y, -y,  x,  y ]          x = cos(t)
     *  [ -y, -y, -y,  x ]          y = sin(t) / n
     *
     * To reduce the number of multiplies, the x coefficient is applied with
     * the cyclical delay line coefficients.  Thus only the y coefficient is
     * applied when mixing, and is modified to be:  y / x.
     */
    f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
    f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
    f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
    f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));

    // Output the results of the matrix for all four channels, attenuated by
    // the late reverb gain (which is attenuated by the 'x' mix coefficient).
    out[0] = State->Late.Gain * f[0];
    out[1] = State->Late.Gain * f[1];
    out[2] = State->Late.Gain * f[2];
    out[3] = State->Late.Gain * f[3];

    // Re-feed the cyclical delay lines.
    DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]);
    DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]);
    DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]);
    DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]);
}

// Given an input sample, this function mixes echo into the four-channel late
// reverb.
static __inline ALvoid EAXEcho(ALverbState *State, ALfloat in, ALfloat *late)
{
    ALfloat out, feed;

    // Get the latest attenuated echo sample for output.
    feed = AttenuatedDelayLineOut(&State->Echo.Delay,
                                  State->Offset - State->Echo.Offset,
                                  State->Echo.Coeff);

    // Mix the output into the late reverb channels.
    out = State->Echo.MixCoeff[0] * feed;
    late[0] = (State->Echo.MixCoeff[1] * late[0]) + out;
    late[1] = (State->Echo.MixCoeff[1] * late[1]) + out;
    late[2] = (State->Echo.MixCoeff[1] * late[2]) + out;
    late[3] = (State->Echo.MixCoeff[1] * late[3]) + out;

    // Mix the energy-attenuated input with the output and pass it through
    // the echo low-pass filter.
    feed += State->Echo.DensityGain * in;
    feed += ((State->Echo.LpSample - feed) * State->Echo.LpCoeff);
    State->Echo.LpSample = feed;

    // Then the echo all-pass filter.
    feed = AllpassInOut(&State->Echo.ApDelay,
                       State->Offset - State->Echo.ApOffset,
                       State->Offset, feed, State->Echo.ApFeedCoeff,
                       State->Echo.ApCoeff);

    // Feed the delay with the mixed and filtered sample.
    DelayLineIn(&State->Echo.Delay, State->Offset, feed);
}

// Perform the non-EAX reverb pass on a given input sample, resulting in
// four-channel output.
static __inline ALvoid VerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
{
    ALfloat feed, taps[4];

    // Low-pass filter the incoming sample.
    in = lpFilter2P(&State->LpFilter, 0, in);

    // Feed the initial delay line.
    DelayLineIn(&State->Delay, State->Offset, in);

    // Calculate the early reflection from the first delay tap.
    in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
    EarlyReflection(State, in, early);

    // Feed the decorrelator from the energy-attenuated output of the second
    // delay tap.
    in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
    feed = in * State->Late.DensityGain;
    DelayLineIn(&State->Decorrelator, State->Offset, feed);

    // Calculate the late reverb from the decorrelator taps.
    taps[0] = feed;
    taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
    taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
    taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
    LateReverb(State, taps, late);

    // Step all delays forward one sample.
    State->Offset++;
}

// Perform the EAX reverb pass on a given input sample, resulting in four-
// channel output.
static __inline ALvoid EAXVerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
{
    ALfloat feed, taps[4];

    // Low-pass filter the incoming sample.
    in = lpFilter2P(&State->LpFilter, 0, in);

    // Perform any modulation on the input.
    in = EAXModulation(State, in);

    // Feed the initial delay line.
    DelayLineIn(&State->Delay, State->Offset, in);

    // Calculate the early reflection from the first delay tap.
    in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
    EarlyReflection(State, in, early);

    // Feed the decorrelator from the energy-attenuated output of the second
    // delay tap.
    in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
    feed = in * State->Late.DensityGain;
    DelayLineIn(&State->Decorrelator, State->Offset, feed);

    // Calculate the late reverb from the decorrelator taps.
    taps[0] = feed;
    taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
    taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
    taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
    LateReverb(State, taps, late);

    // Calculate and mix in any echo.
    EAXEcho(State, in, late);

    // Step all delays forward one sample.
    State->Offset++;
}

// This destroys the reverb state.  It should be called only when the effect
// slot has a different (or no) effect loaded over the reverb effect.
static ALvoid VerbDestroy(ALeffectState *effect)
{
    ALverbState *State = (ALverbState*)effect;
    if(State)
    {
        free(State->SampleBuffer);
        State->SampleBuffer = NULL;
        free(State);
    }
}

// This updates the device-dependant reverb state.  This is called on
// initialization and any time the device parameters (eg. playback frequency,
// or format) have been changed.
static ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
{
    ALverbState *State = (ALverbState*)effect;
    ALuint frequency = Device->Frequency, index;

    // Allocate the delay lines.
    if(!AllocLines(AL_FALSE, frequency, State))
        return AL_FALSE;

    // The early reflection and late all-pass filter line lengths are static,
    // so their offsets only need to be calculated once.
    for(index = 0;index < 4;index++)
    {
        State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
                                              frequency);
        State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
                                               frequency);
    }

    return AL_TRUE;
}

// This updates the device-dependant EAX reverb state.  This is called on
// initialization and any time the device parameters (eg. playback frequency,
// format) have been changed.
static ALboolean EAXVerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
{
    ALverbState *State = (ALverbState*)effect;
    ALuint frequency = Device->Frequency, index;

    // Allocate the delay lines.
    if(!AllocLines(AL_TRUE, frequency, State))
        return AL_FALSE;

    // Calculate the modulation filter coefficient.  Notice that the exponent
    // is calculated given the current sample rate.  This ensures that the
    // resulting filter response over time is consistent across all sample
    // rates.
    State->Mod.Coeff = aluPow(MODULATION_FILTER_COEFF,
                              MODULATION_FILTER_CONST / frequency);

    // The early reflection and late all-pass filter line lengths are static,
    // so their offsets only need to be calculated once.
    for(index = 0;index < 4;index++)
    {
        State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
                                              frequency);
        State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
                                               frequency);
    }

    // The echo all-pass filter line length is static, so its offset only
    // needs to be calculated once.
    State->Echo.ApOffset = (ALuint)(ECHO_ALLPASS_LENGTH * frequency);

    return AL_TRUE;
}

// This updates the reverb state.  This is called any time the reverb effect
// is loaded into a slot.
static ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
{
    ALverbState *State = (ALverbState*)effect;
    ALuint frequency = Context->Device->Frequency;
    ALfloat cw, x, y, hfRatio;

    // Calculate the master low-pass filter (from the master effect HF gain).
    cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
    // This is done with 2 chained 1-pole filters, so no need to square g.
    State->LpFilter.coeff = lpCoeffCalc(Effect->Reverb.GainHF, cw);

    // Update the initial effect delay.
    UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
                    Effect->Reverb.LateReverbDelay, frequency, State);

    // Update the early lines.
    UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
                     Effect->Reverb.LateReverbDelay, State);

    // Update the decorrelator.
    UpdateDecorrelator(Effect->Reverb.Density, frequency, State);

    // Get the mixing matrix coefficients (x and y).
    CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
    // Then divide x into y to simplify the matrix calculation.
    State->Late.MixCoeff = y / x;

    // If the HF limit parameter is flagged, calculate an appropriate limit
    // based on the air absorption parameter.
    hfRatio = Effect->Reverb.DecayHFRatio;
    if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
        hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
                                     Effect->Reverb.DecayTime);

    // Update the late lines.
    UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
                    x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
                    Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);
}

// This updates the EAX reverb state.  This is called any time the EAX reverb
// effect is loaded into a slot.
static ALvoid EAXVerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
{
    ALverbState *State = (ALverbState*)effect;
    ALuint frequency = Context->Device->Frequency;
    ALfloat cw, x, y, hfRatio;

    // Calculate the master low-pass filter (from the master effect HF gain).
    cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
    // This is done with 2 chained 1-pole filters, so no need to square g.
    State->LpFilter.coeff = lpCoeffCalc(Effect->Reverb.GainHF, cw);

    // Update the modulator line.
    UpdateModulator(Effect->Reverb.ModulationTime,
                    Effect->Reverb.ModulationDepth, frequency, State);

    // Update the initial effect delay.
    UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
                    Effect->Reverb.LateReverbDelay, frequency, State);

    // Update the early lines.
    UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
                     Effect->Reverb.LateReverbDelay, State);

    // Update the decorrelator.
    UpdateDecorrelator(Effect->Reverb.Density, frequency, State);

    // Get the mixing matrix coefficients (x and y).
    CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
    // Then divide x into y to simplify the matrix calculation.
    State->Late.MixCoeff = y / x;

    // If the HF limit parameter is flagged, calculate an appropriate limit
    // based on the air absorption parameter.
    hfRatio = Effect->Reverb.DecayHFRatio;
    if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
        hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
                                     Effect->Reverb.DecayTime);

    // Update the late lines.
    UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
                    x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
                    Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);

    // Update the echo line.
    UpdateEchoLine(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
                   Effect->Reverb.EchoTime, Effect->Reverb.DecayTime,
                   Effect->Reverb.Diffusion, Effect->Reverb.EchoDepth,
                   hfRatio, cw, frequency, State);

    // Update early and late 3D panning.
    Update3DPanning(Effect->Reverb.ReflectionsPan, Effect->Reverb.LateReverbPan,
                    Context->PanningLUT, State);
}

// This processes the reverb state, given the input samples and an output
// buffer.
static ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
    ALverbState *State = (ALverbState*)effect;
    ALuint index;
    ALfloat early[4], late[4], out[4];
    ALfloat gain = Slot->Gain;

    for(index = 0;index < SamplesToDo;index++)
    {
        // Process reverb for this sample.
        VerbPass(State, SamplesIn[index], early, late);

        // Mix early reflections and late reverb.
        out[0] = (early[0] + late[0]) * gain;
        out[1] = (early[1] + late[1]) * gain;
        out[2] = (early[2] + late[2]) * gain;
        out[3] = (early[3] + late[3]) * gain;

        // Output the results.
        SamplesOut[index][FRONT_LEFT]   += out[0];
        SamplesOut[index][FRONT_RIGHT]  += out[1];
        SamplesOut[index][FRONT_CENTER] += out[3];
        SamplesOut[index][SIDE_LEFT]    += out[0];
        SamplesOut[index][SIDE_RIGHT]   += out[1];
        SamplesOut[index][BACK_LEFT]    += out[0];
        SamplesOut[index][BACK_RIGHT]   += out[1];
        SamplesOut[index][BACK_CENTER]  += out[2];
    }
}

// This processes the EAX reverb state, given the input samples and an output
// buffer.
static ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
    ALverbState *State = (ALverbState*)effect;
    ALuint index;
    ALfloat early[4], late[4];
    ALfloat gain = Slot->Gain;

    for(index = 0;index < SamplesToDo;index++)
    {
        // Process reverb for this sample.
        EAXVerbPass(State, SamplesIn[index], early, late);

        // Unfortunately, while the number and configuration of gains for
        // panning adjust according to OUTPUTCHANNELS, the output from the
        // reverb engine is not so scalable.
        SamplesOut[index][FRONT_LEFT] +=
           (State->Early.PanGain[FRONT_LEFT]*early[0] +
            State->Late.PanGain[FRONT_LEFT]*late[0]) * gain;
        SamplesOut[index][FRONT_RIGHT] +=
           (State->Early.PanGain[FRONT_RIGHT]*early[1] +
            State->Late.PanGain[FRONT_RIGHT]*late[1]) * gain;
        SamplesOut[index][FRONT_CENTER] +=
           (State->Early.PanGain[FRONT_CENTER]*early[3] +
            State->Late.PanGain[FRONT_CENTER]*late[3]) * gain;
        SamplesOut[index][SIDE_LEFT] +=
           (State->Early.PanGain[SIDE_LEFT]*early[0] +
            State->Late.PanGain[SIDE_LEFT]*late[0]) * gain;
        SamplesOut[index][SIDE_RIGHT] +=
           (State->Early.PanGain[SIDE_RIGHT]*early[1] +
            State->Late.PanGain[SIDE_RIGHT]*late[1]) * gain;
        SamplesOut[index][BACK_LEFT] +=
           (State->Early.PanGain[BACK_LEFT]*early[0] +
            State->Late.PanGain[BACK_LEFT]*late[0]) * gain;
        SamplesOut[index][BACK_RIGHT] +=
           (State->Early.PanGain[BACK_RIGHT]*early[1] +
            State->Late.PanGain[BACK_RIGHT]*late[1]) * gain;
        SamplesOut[index][BACK_CENTER] +=
           (State->Early.PanGain[BACK_CENTER]*early[2] +
            State->Late.PanGain[BACK_CENTER]*late[2]) * gain;
    }
}

// This creates the reverb state.  It should be called only when the reverb
// effect is loaded into a slot that doesn't already have a reverb effect.
ALeffectState *VerbCreate(void)
{
    ALverbState *State = NULL;
    ALuint index;

    State = malloc(sizeof(ALverbState));
    if(!State)
        return NULL;

    State->state.Destroy = VerbDestroy;
    State->state.DeviceUpdate = VerbDeviceUpdate;
    State->state.Update = VerbUpdate;
    State->state.Process = VerbProcess;

    State->TotalSamples = 0;
    State->SampleBuffer = NULL;

    State->LpFilter.coeff = 0.0f;
    State->LpFilter.history[0] = 0.0f;
    State->LpFilter.history[1] = 0.0f;

    State->Mod.Delay.Mask = 0;
    State->Mod.Delay.Line = NULL;
    State->Mod.Index = 0;
    State->Mod.Range = 1;
    State->Mod.Depth = 0.0f;
    State->Mod.Coeff = 0.0f;
    State->Mod.Filter = 0.0f;

    State->Delay.Mask = 0;
    State->Delay.Line = NULL;
    State->DelayTap[0] = 0;
    State->DelayTap[1] = 0;

    State->Early.Gain = 0.0f;
    for(index = 0;index < 4;index++)
    {
        State->Early.Coeff[index] = 0.0f;
        State->Early.Delay[index].Mask = 0;
        State->Early.Delay[index].Line = NULL;
        State->Early.Offset[index] = 0;
    }

    State->Decorrelator.Mask = 0;
    State->Decorrelator.Line = NULL;
    State->DecoTap[0] = 0;
    State->DecoTap[1] = 0;
    State->DecoTap[2] = 0;

    State->Late.Gain = 0.0f;
    State->Late.DensityGain = 0.0f;
    State->Late.ApFeedCoeff = 0.0f;
    State->Late.MixCoeff = 0.0f;
    for(index = 0;index < 4;index++)
    {
        State->Late.ApCoeff[index] = 0.0f;
        State->Late.ApDelay[index].Mask = 0;
        State->Late.ApDelay[index].Line = NULL;
        State->Late.ApOffset[index] = 0;

        State->Late.Coeff[index] = 0.0f;
        State->Late.Delay[index].Mask = 0;
        State->Late.Delay[index].Line = NULL;
        State->Late.Offset[index] = 0;

        State->Late.LpCoeff[index] = 0.0f;
        State->Late.LpSample[index] = 0.0f;
    }

    for(index = 0;index < OUTPUTCHANNELS;index++)
    {
        State->Early.PanGain[index] = 0.0f;
        State->Late.PanGain[index] = 0.0f;
    }

    State->Echo.DensityGain = 0.0f;
    State->Echo.Delay.Mask = 0;
    State->Echo.Delay.Line = NULL;
    State->Echo.ApDelay.Mask = 0;
    State->Echo.ApDelay.Line = NULL;
    State->Echo.Coeff = 0.0f;
    State->Echo.ApFeedCoeff = 0.0f;
    State->Echo.ApCoeff = 0.0f;
    State->Echo.Offset = 0;
    State->Echo.ApOffset = 0;
    State->Echo.LpCoeff = 0.0f;
    State->Echo.LpSample = 0.0f;
    State->Echo.MixCoeff[0] = 0.0f;
    State->Echo.MixCoeff[1] = 0.0f;

    State->Offset = 0;

    return &State->state;
}

ALeffectState *EAXVerbCreate(void)
{
    ALeffectState *State = VerbCreate();
    if(State)
    {
        State->DeviceUpdate = EAXVerbDeviceUpdate;
        State->Update = EAXVerbUpdate;
        State->Process = EAXVerbProcess;
    }
    return State;
}