1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
#include "config.h"
#include "bformatdec.h"
#include "ambdec.h"
#include "alu.h"
typedef struct BandSplitter {
ALfloat coeff;
ALfloat lp_z1;
ALfloat lp_z2;
ALfloat hp_z1;
} BandSplitter;
static void bandsplit_init(BandSplitter *splitter, ALfloat freq_mult)
{
ALfloat w = freq_mult * F_TAU;
ALfloat cw = cosf(w);
if(cw > FLT_EPSILON)
splitter->coeff = (sinf(w) - 1.0f) / cw;
else
splitter->coeff = cw * -0.5f;
splitter->lp_z1 = 0.0f;
splitter->lp_z2 = 0.0f;
splitter->hp_z1 = 0.0f;
}
static void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout,
const ALfloat *input, ALuint count)
{
ALfloat coeff, d, x;
ALuint i;
coeff = splitter->coeff*0.5f + 0.5f;
for(i = 0;i < count;i++)
{
x = input[i];
d = (x - splitter->lp_z1) * coeff;
x = splitter->lp_z1 + d;
splitter->lp_z1 = x + d;
d = (x - splitter->lp_z2) * coeff;
x = splitter->lp_z2 + d;
splitter->lp_z2 = x + d;
lpout[i] = x;
}
coeff = splitter->coeff;
for(i = 0;i < count;i++)
{
x = input[i];
d = x - coeff*splitter->hp_z1;
x = splitter->hp_z1 + coeff*d;
splitter->hp_z1 = d;
hpout[i] = x - lpout[i];
}
}
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
2.236067978f, /* ACN 4 (V), sqrt(5) */
2.236067978f, /* ACN 5 (T), sqrt(5) */
2.236067978f, /* ACN 6 (R), sqrt(5) */
2.236067978f, /* ACN 7 (S), sqrt(5) */
2.236067978f, /* ACN 8 (U), sqrt(5) */
2.645751311f, /* ACN 9 (Q), sqrt(7) */
2.645751311f, /* ACN 10 (O), sqrt(7) */
2.645751311f, /* ACN 11 (M), sqrt(7) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.645751311f, /* ACN 13 (L), sqrt(7) */
2.645751311f, /* ACN 14 (N), sqrt(7) */
2.645751311f, /* ACN 15 (P), sqrt(7) */
};
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};
/* NOTE: Low-frequency (LF) fields and BandSplitter filters are unused with
* single-band decoding
*/
typedef struct BFormatDec {
alignas(16) ALfloat MatrixHF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
alignas(16) ALfloat MatrixLF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
BandSplitter XOver[MAX_AMBI_COEFFS];
ALfloat (*Samples)[BUFFERSIZE];
/* These two alias into Samples */
ALfloat (*SamplesHF)[BUFFERSIZE];
ALfloat (*SamplesLF)[BUFFERSIZE];
ALuint NumChannels;
ALboolean DualBand;
} BFormatDec;
BFormatDec *bformatdec_alloc()
{
return al_calloc(16, sizeof(BFormatDec));
}
void bformatdec_free(BFormatDec *dec)
{
if(dec)
{
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
memset(dec, 0, sizeof(*dec));
al_free(dec);
}
}
int bformatdec_getOrder(const struct BFormatDec *dec)
{
if(dec->NumChannels > 9) return 3;
if(dec->NumChannels > 4) return 2;
if(dec->NumChannels > 1) return 1;
return 0;
}
void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALuint chancount, ALuint srate, const ALuint chanmap[MAX_OUTPUT_CHANNELS])
{
const ALfloat *coeff_scale = UnitScale;
ALfloat ratio;
ALuint i;
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
dec->NumChannels = chancount;
dec->Samples = al_calloc(16, dec->NumChannels * conf->FreqBands *
sizeof(dec->Samples[0]));
dec->SamplesHF = dec->Samples;
dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
if(conf->CoeffScale == ADS_SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf->CoeffScale == ADS_FuMa)
coeff_scale = FuMa2N3DScale;
if(conf->FreqBands == 1)
{
dec->DualBand = AL_FALSE;
ratio = 1.0f;
}
else
{
dec->DualBand = AL_TRUE;
ratio = conf->XOverFreq / (ALfloat)srate;
for(i = 0;i < MAX_AMBI_COEFFS;i++)
bandsplit_init(&dec->XOver[i], ratio);
ratio = powf(10.0f, conf->XOverRatio / 40.0f);
memset(dec->MatrixLF, 0, sizeof(dec->MatrixLF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[j] * gain;
}
}
}
memset(dec->MatrixHF, 0, sizeof(dec->MatrixHF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain;
}
}
}
static void apply_row(ALfloat *out, const ALfloat *mtx, ALfloat (*restrict in)[BUFFERSIZE], ALuint inchans, ALuint todo)
{
ALuint c, i;
for(c = 0;c < inchans;c++)
{
ALfloat gain = mtx[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < todo;i++)
out[i] += in[c][i] * gain;
}
}
void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALuint OutChannels, ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint SamplesToDo)
{
ALuint chan, i;
if(dec->DualBand)
{
for(i = 0;i < dec->NumChannels;i++)
bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
InSamples[i], SamplesToDo);
for(chan = 0;chan < OutChannels;chan++)
{
apply_row(OutBuffer[chan], dec->MatrixHF[chan], dec->SamplesHF,
dec->NumChannels, SamplesToDo);
apply_row(OutBuffer[chan], dec->MatrixLF[chan], dec->SamplesLF,
dec->NumChannels, SamplesToDo);
}
}
else
{
for(chan = 0;chan < OutChannels;chan++)
apply_row(OutBuffer[chan], dec->MatrixHF[chan], InSamples,
dec->NumChannels, SamplesToDo);
}
}
|