1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
|
#include "config.h"
#include "bformatdec.h"
#include "ambdec.h"
#include "alu.h"
#include "threads.h"
#include "almalloc.h"
typedef struct BandSplitter {
ALfloat coeff;
ALfloat lp_z1;
ALfloat lp_z2;
ALfloat hp_z1;
} BandSplitter;
static void bandsplit_init(BandSplitter *splitter, ALfloat freq_mult)
{
ALfloat w = freq_mult * F_TAU;
ALfloat cw = cosf(w);
if(cw > FLT_EPSILON)
splitter->coeff = (sinf(w) - 1.0f) / cw;
else
splitter->coeff = cw * -0.5f;
splitter->lp_z1 = 0.0f;
splitter->lp_z2 = 0.0f;
splitter->hp_z1 = 0.0f;
}
static void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout,
const ALfloat *input, ALuint count)
{
ALfloat coeff, d, x;
ALfloat z1, z2;
ALuint i;
coeff = splitter->coeff*0.5f + 0.5f;
z1 = splitter->lp_z1;
z2 = splitter->lp_z2;
for(i = 0;i < count;i++)
{
x = input[i];
d = (x - z1) * coeff;
x = z1 + d;
z1 = x + d;
d = (x - z2) * coeff;
x = z2 + d;
z2 = x + d;
lpout[i] = x;
}
splitter->lp_z1 = z1;
splitter->lp_z2 = z2;
coeff = splitter->coeff;
z1 = splitter->hp_z1;
for(i = 0;i < count;i++)
{
x = input[i];
d = x - coeff*z1;
x = z1 + coeff*d;
z1 = d;
hpout[i] = x - lpout[i];
}
splitter->hp_z1 = z1;
}
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
2.236067978f, /* ACN 4 (V), sqrt(5) */
2.236067978f, /* ACN 5 (T), sqrt(5) */
2.236067978f, /* ACN 6 (R), sqrt(5) */
2.236067978f, /* ACN 7 (S), sqrt(5) */
2.236067978f, /* ACN 8 (U), sqrt(5) */
2.645751311f, /* ACN 9 (Q), sqrt(7) */
2.645751311f, /* ACN 10 (O), sqrt(7) */
2.645751311f, /* ACN 11 (M), sqrt(7) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.645751311f, /* ACN 13 (L), sqrt(7) */
2.645751311f, /* ACN 14 (N), sqrt(7) */
2.645751311f, /* ACN 15 (P), sqrt(7) */
};
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};
static const ALfloat SquareMatrixHF[4][MAX_AMBI_COEFFS] = {
{ 0.353553f, 0.204094f, 0.0f, 0.204094f },
{ 0.353553f, -0.204094f, 0.0f, 0.204094f },
{ 0.353553f, 0.204094f, 0.0f, -0.204094f },
{ 0.353553f, -0.204094f, 0.0f, -0.204094f },
};
static const ALfloat SquareMatrixLF[4][MAX_AMBI_COEFFS] = {
{ 0.25f, 0.204094f, 0.0f, 0.204094f },
{ 0.25f, -0.204094f, 0.0f, 0.204094f },
{ 0.25f, 0.204094f, 0.0f, -0.204094f },
{ 0.25f, -0.204094f, 0.0f, -0.204094f },
};
static ALfloat SquareEncoder[4][MAX_AMBI_COEFFS];
static const ALfloat CubeMatrixHF[8][MAX_AMBI_COEFFS] = {
{ 0.25f, 0.14425f, 0.14425f, 0.14425f },
{ 0.25f, -0.14425f, 0.14425f, 0.14425f },
{ 0.25f, 0.14425f, 0.14425f, -0.14425f },
{ 0.25f, -0.14425f, 0.14425f, -0.14425f },
{ 0.25f, 0.14425f, -0.14425f, 0.14425f },
{ 0.25f, -0.14425f, -0.14425f, 0.14425f },
{ 0.25f, 0.14425f, -0.14425f, -0.14425f },
{ 0.25f, -0.14425f, -0.14425f, -0.14425f },
};
static const ALfloat CubeMatrixLF[8][MAX_AMBI_COEFFS] = {
{ 0.125f, 0.125f, 0.125f, 0.125f },
{ 0.125f, -0.125f, 0.125f, 0.125f },
{ 0.125f, 0.125f, 0.125f, -0.125f },
{ 0.125f, -0.125f, 0.125f, -0.125f },
{ 0.125f, 0.125f, -0.125f, 0.125f },
{ 0.125f, -0.125f, -0.125f, 0.125f },
{ 0.125f, 0.125f, -0.125f, -0.125f },
{ 0.125f, -0.125f, -0.125f, -0.125f },
};
static ALfloat CubeEncoder[8][MAX_AMBI_COEFFS];
static alonce_flag encoder_inited = AL_ONCE_FLAG_INIT;
static void init_encoder(void)
{
ALuint i, j;
CalcXYZCoeffs(-0.577350269f, 0.577350269f, -0.577350269f, 0.0f, CubeEncoder[0]);
CalcXYZCoeffs( 0.577350269f, 0.577350269f, -0.577350269f, 0.0f, CubeEncoder[1]);
CalcXYZCoeffs(-0.577350269f, 0.577350269f, 0.577350269f, 0.0f, CubeEncoder[2]);
CalcXYZCoeffs( 0.577350269f, 0.577350269f, 0.577350269f, 0.0f, CubeEncoder[3]);
CalcXYZCoeffs(-0.577350269f, -0.577350269f, -0.577350269f, 0.0f, CubeEncoder[4]);
CalcXYZCoeffs( 0.577350269f, -0.577350269f, -0.577350269f, 0.0f, CubeEncoder[5]);
CalcXYZCoeffs(-0.577350269f, -0.577350269f, 0.577350269f, 0.0f, CubeEncoder[6]);
CalcXYZCoeffs( 0.577350269f, -0.577350269f, 0.577350269f, 0.0f, CubeEncoder[7]);
CalcXYZCoeffs(-0.707106781f, 0.0f, -0.707106781f, 0.0f, SquareEncoder[0]);
CalcXYZCoeffs( 0.707106781f, 0.0f, -0.707106781f, 0.0f, SquareEncoder[1]);
CalcXYZCoeffs(-0.707106781f, 0.0f, 0.707106781f, 0.0f, SquareEncoder[2]);
CalcXYZCoeffs( 0.707106781f, 0.0f, 0.707106781f, 0.0f, SquareEncoder[3]);
for(i = 0;i < 4;i++)
{
/* Remove the skipped height-related coefficients for 2D rendering. */
SquareEncoder[i][2] = SquareEncoder[i][3];
SquareEncoder[i][3] = SquareEncoder[i][4];
SquareEncoder[i][4] = SquareEncoder[i][8];
SquareEncoder[i][5] = SquareEncoder[i][9];
SquareEncoder[i][6] = SquareEncoder[i][15];
for(j = 7;j < MAX_AMBI_COEFFS;j++)
SquareEncoder[i][j] = 0.0f;
}
}
#define MAX_DELAY_LENGTH 128
/* NOTE: Low-frequency (LF) fields and BandSplitter filters are unused with
* single-band decoding
*/
typedef struct BFormatDec {
ALboolean Enabled[MAX_OUTPUT_CHANNELS];
alignas(16) ALfloat MatrixHF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
alignas(16) ALfloat MatrixLF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
BandSplitter XOver[MAX_AMBI_COEFFS];
ALfloat (*Samples)[BUFFERSIZE];
/* These two alias into Samples */
ALfloat (*SamplesHF)[BUFFERSIZE];
ALfloat (*SamplesLF)[BUFFERSIZE];
alignas(16) ALfloat ChannelMix[BUFFERSIZE];
struct {
alignas(16) ALfloat Buffer[MAX_DELAY_LENGTH];
ALuint Length; /* Valid range is [0...MAX_DELAY_LENGTH). */
} Delay[MAX_OUTPUT_CHANNELS];
struct {
BandSplitter XOver[4];
const ALfloat (*restrict MatrixHF)[MAX_AMBI_COEFFS];
const ALfloat (*restrict MatrixLF)[MAX_AMBI_COEFFS];
const ALfloat (*restrict Encoder)[MAX_AMBI_COEFFS];
ALuint NumChannels;
} UpSampler;
ALuint NumChannels;
ALboolean DualBand;
ALboolean Periphonic;
} BFormatDec;
BFormatDec *bformatdec_alloc()
{
alcall_once(&encoder_inited, init_encoder);
return al_calloc(16, sizeof(BFormatDec));
}
void bformatdec_free(BFormatDec *dec)
{
if(dec)
{
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
memset(dec, 0, sizeof(*dec));
al_free(dec);
}
}
int bformatdec_getOrder(const struct BFormatDec *dec)
{
if(dec->Periphonic)
{
if(dec->NumChannels > 9) return 3;
if(dec->NumChannels > 4) return 2;
if(dec->NumChannels > 1) return 1;
}
else
{
if(dec->NumChannels > 5) return 3;
if(dec->NumChannels > 3) return 2;
if(dec->NumChannels > 1) return 1;
}
return 0;
}
void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALuint chancount, ALuint srate, const ALuint chanmap[MAX_OUTPUT_CHANNELS], int flags)
{
static const ALuint map2DTo3D[7] = {
0, 1, 3, 4, 8, 9, 15
};
const ALfloat *coeff_scale = UnitScale;
ALfloat distgain[MAX_OUTPUT_CHANNELS];
ALfloat maxdist, ratio;
ALuint i;
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
dec->NumChannels = chancount;
dec->Samples = al_calloc(16, dec->NumChannels*2 * sizeof(dec->Samples[0]));
dec->SamplesHF = dec->Samples;
dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
dec->Enabled[i] = AL_FALSE;
for(i = 0;i < conf->NumSpeakers;i++)
dec->Enabled[chanmap[i]] = AL_TRUE;
if(conf->CoeffScale == ADS_SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf->CoeffScale == ADS_FuMa)
coeff_scale = FuMa2N3DScale;
ratio = 400.0f / (ALfloat)srate;
for(i = 0;i < 4;i++)
bandsplit_init(&dec->UpSampler.XOver[i], ratio);
if((conf->ChanMask & ~0x831b))
{
dec->UpSampler.MatrixHF = CubeMatrixHF;
dec->UpSampler.MatrixLF = CubeMatrixLF;
dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])CubeEncoder;
dec->UpSampler.NumChannels = 8;
dec->Periphonic = AL_TRUE;
}
else
{
dec->UpSampler.MatrixHF = SquareMatrixHF;
dec->UpSampler.MatrixLF = SquareMatrixLF;
dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])SquareEncoder;
dec->UpSampler.NumChannels = 4;
dec->Periphonic = AL_FALSE;
}
maxdist = 0.0f;
for(i = 0;i < conf->NumSpeakers;i++)
{
maxdist = maxf(maxdist, conf->Speakers[i].Distance);
distgain[i] = 1.0f;
}
memset(dec->Delay, 0, sizeof(dec->Delay));
if((flags&BFDF_DistanceComp) && maxdist > 0.0f)
{
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALfloat delay;
/* Distance compensation only delays in steps of the sample rate.
* This is a bit less accurate since the delay time falls to the
* nearest sample time, but it's far simpler as it doesn't have to
* deal with phase offsets. This means at 48khz, for instance, the
* distance delay will be in steps of about 7 millimeters.
*/
delay = floorf((maxdist-conf->Speakers[i].Distance) / SPEEDOFSOUNDMETRESPERSEC *
(ALfloat)srate + 0.5f);
if(delay >= (ALfloat)MAX_DELAY_LENGTH)
ERR("Delay for speaker \"%s\" exceeds buffer length (%f >= %u)\n",
al_string_get_cstr(conf->Speakers[i].Name), delay, MAX_DELAY_LENGTH);
dec->Delay[chan].Length = (ALuint)clampf(delay, 0.0f, (ALfloat)(MAX_DELAY_LENGTH-1));
distgain[i] = conf->Speakers[i].Distance / maxdist;
TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
al_string_get_cstr(conf->Speakers[i].Name), dec->Delay[chan].Length, distgain[i]
);
}
}
if(conf->FreqBands == 1)
{
dec->DualBand = AL_FALSE;
ratio = 1.0f;
}
else
{
dec->DualBand = AL_TRUE;
ratio = conf->XOverFreq / (ALfloat)srate;
for(i = 0;i < MAX_AMBI_COEFFS;i++)
bandsplit_init(&dec->XOver[i], ratio);
ratio = powf(10.0f, conf->XOverRatio / 40.0f);
memset(dec->MatrixLF, 0, sizeof(dec->MatrixLF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
if(!dec->Periphonic)
{
for(j = 0;j < 7;j++)
{
ALuint l = map2DTo3D[j];
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<l)))
dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[l] *
gain * distgain[i];
}
}
else
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[j] *
gain * distgain[i];
}
}
}
}
memset(dec->MatrixHF, 0, sizeof(dec->MatrixHF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
if(!dec->Periphonic)
{
for(j = 0;j < 7;j++)
{
ALuint l = map2DTo3D[j];
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<l)))
dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
gain * distgain[i];
}
}
else
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
gain * distgain[i];
}
}
}
}
static void apply_row(ALfloat *out, const ALfloat *mtx, ALfloat (*restrict in)[BUFFERSIZE], ALuint inchans, ALuint todo)
{
ALuint c, i;
for(c = 0;c < inchans;c++)
{
ALfloat gain = mtx[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < todo;i++)
out[i] += in[c][i] * gain;
}
}
void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALuint OutChannels, ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint SamplesToDo)
{
ALuint chan, i;
if(dec->DualBand)
{
for(i = 0;i < dec->NumChannels;i++)
bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
InSamples[i], SamplesToDo);
for(chan = 0;chan < OutChannels;chan++)
{
if(!dec->Enabled[chan])
continue;
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->MatrixHF[chan], dec->SamplesHF,
dec->NumChannels, SamplesToDo);
apply_row(dec->ChannelMix, dec->MatrixLF[chan], dec->SamplesLF,
dec->NumChannels, SamplesToDo);
if(dec->Delay[chan].Length > 0)
{
const ALuint base = dec->Delay[chan].Length;
if(SamplesToDo >= base)
{
for(i = 0;i < base;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
for(;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i-base];
memcpy(dec->Delay[chan].Buffer, &dec->ChannelMix[SamplesToDo-base],
base*sizeof(ALfloat));
}
else
{
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
memmove(dec->Delay[chan].Buffer, dec->Delay[chan].Buffer+SamplesToDo,
base - SamplesToDo);
memcpy(dec->Delay[chan].Buffer+base-SamplesToDo, dec->ChannelMix,
SamplesToDo*sizeof(ALfloat));
}
}
else for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
else
{
for(chan = 0;chan < OutChannels;chan++)
{
if(!dec->Enabled[chan])
continue;
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->MatrixHF[chan], InSamples,
dec->NumChannels, SamplesToDo);
if(dec->Delay[chan].Length > 0)
{
const ALuint base = dec->Delay[chan].Length;
if(SamplesToDo >= base)
{
for(i = 0;i < base;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
for(;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i-base];
memcpy(dec->Delay[chan].Buffer, &dec->ChannelMix[SamplesToDo-base],
base*sizeof(ALfloat));
}
else
{
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
memmove(dec->Delay[chan].Buffer, dec->Delay[chan].Buffer+SamplesToDo,
base - SamplesToDo);
memcpy(dec->Delay[chan].Buffer+base-SamplesToDo, dec->ChannelMix,
SamplesToDo*sizeof(ALfloat));
}
}
else for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
}
void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint InChannels, ALuint SamplesToDo)
{
ALuint i, j, k;
/* First, split the first-order components into low and high frequency
* bands. This assumes SamplesHF and SamplesLF have enough space for first-
* order content (to which, this up-sampler is only used with second-order
* or higher decoding, so it will).
*/
for(i = 0;i < InChannels;i++)
bandsplit_process(&dec->UpSampler.XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
InSamples[i], SamplesToDo);
/* This up-sampler is very simplistic. It essentially decodes the first-
* order content to a square channel array (or cube if height is desired),
* then encodes those points onto the higher order soundfield.
*/
for(k = 0;k < dec->UpSampler.NumChannels;k++)
{
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->UpSampler.MatrixHF[k], dec->SamplesHF,
InChannels, SamplesToDo);
apply_row(dec->ChannelMix, dec->UpSampler.MatrixLF[k], dec->SamplesLF,
InChannels, SamplesToDo);
for(j = 0;j < dec->NumChannels;j++)
{
ALfloat gain = dec->UpSampler.Encoder[k][j];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < SamplesToDo;i++)
OutBuffer[j][i] += dec->ChannelMix[i] * gain;
}
}
}
|