aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/bformatdec.cpp
blob: f36cf08bb2006c83118713b365a774a433df45d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

#include "config.h"

#include <array>
#include <vector>

#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"

#include "threads.h"
#include "almalloc.h"


/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
 * coefficients should be divided by these values to get proper N3D scalings.
 */
const ALfloat N3D2N3DScale[MAX_AMBI_COEFFS] = {
    1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
    1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
    1.000000000f, /* ACN  0 (W), sqrt(1) */
    1.732050808f, /* ACN  1 (Y), sqrt(3) */
    1.732050808f, /* ACN  2 (Z), sqrt(3) */
    1.732050808f, /* ACN  3 (X), sqrt(3) */
    2.236067978f, /* ACN  4 (V), sqrt(5) */
    2.236067978f, /* ACN  5 (T), sqrt(5) */
    2.236067978f, /* ACN  6 (R), sqrt(5) */
    2.236067978f, /* ACN  7 (S), sqrt(5) */
    2.236067978f, /* ACN  8 (U), sqrt(5) */
    2.645751311f, /* ACN  9 (Q), sqrt(7) */
    2.645751311f, /* ACN 10 (O), sqrt(7) */
    2.645751311f, /* ACN 11 (M), sqrt(7) */
    2.645751311f, /* ACN 12 (K), sqrt(7) */
    2.645751311f, /* ACN 13 (L), sqrt(7) */
    2.645751311f, /* ACN 14 (N), sqrt(7) */
    2.645751311f, /* ACN 15 (P), sqrt(7) */
};
const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
    1.414213562f, /* ACN  0 (W), sqrt(2) */
    1.732050808f, /* ACN  1 (Y), sqrt(3) */
    1.732050808f, /* ACN  2 (Z), sqrt(3) */
    1.732050808f, /* ACN  3 (X), sqrt(3) */
    1.936491673f, /* ACN  4 (V), sqrt(15)/2 */
    1.936491673f, /* ACN  5 (T), sqrt(15)/2 */
    2.236067978f, /* ACN  6 (R), sqrt(5) */
    1.936491673f, /* ACN  7 (S), sqrt(15)/2 */
    1.936491673f, /* ACN  8 (U), sqrt(15)/2 */
    2.091650066f, /* ACN  9 (Q), sqrt(35/8) */
    1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
    2.231093404f, /* ACN 11 (M), sqrt(224/45) */
    2.645751311f, /* ACN 12 (K), sqrt(7) */
    2.231093404f, /* ACN 13 (L), sqrt(224/45) */
    1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
    2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};


namespace {

#define HF_BAND 0
#define LF_BAND 1
#define NUM_BANDS 2

/* These points are in AL coordinates! */
constexpr ALfloat Ambi3DPoints[8][3] = {
    { -0.577350269f,  0.577350269f, -0.577350269f },
    {  0.577350269f,  0.577350269f, -0.577350269f },
    { -0.577350269f,  0.577350269f,  0.577350269f },
    {  0.577350269f,  0.577350269f,  0.577350269f },
    { -0.577350269f, -0.577350269f, -0.577350269f },
    {  0.577350269f, -0.577350269f, -0.577350269f },
    { -0.577350269f, -0.577350269f,  0.577350269f },
    {  0.577350269f, -0.577350269f,  0.577350269f },
};
constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = {
    { 0.125f,  0.125f,  0.125f,  0.125f },
    { 0.125f, -0.125f,  0.125f,  0.125f },
    { 0.125f,  0.125f,  0.125f, -0.125f },
    { 0.125f, -0.125f,  0.125f, -0.125f },
    { 0.125f,  0.125f, -0.125f,  0.125f },
    { 0.125f, -0.125f, -0.125f,  0.125f },
    { 0.125f,  0.125f, -0.125f, -0.125f },
    { 0.125f, -0.125f, -0.125f, -0.125f },
};
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = {
    2.0f,
    1.15470054f, 1.15470054f, 1.15470054f
};


#define INVALID_UPSAMPLE_INDEX INT_MAX
ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn)
{
    ALsizei i;
    for(i = 0;i < numchans;i++)
    {
        if(chans[i].Index == acn)
            return i;
    }
    return INVALID_UPSAMPLE_INDEX;
}
#define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a))

} // namespace


/* NOTE: BandSplitter filters are unused with single-band decoding */
struct BFormatDec {
    ALuint Enabled; /* Bitfield of enabled channels. */

    union {
        alignas(16) ALfloat Dual[MAX_OUTPUT_CHANNELS][NUM_BANDS][MAX_AMBI_COEFFS];
        alignas(16) ALfloat Single[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
    } Matrix;

    BandSplitter XOver[MAX_AMBI_COEFFS];

    al::vector<std::array<ALfloat,BUFFERSIZE>, 16> Samples;
    /* These two alias into Samples */
    std::array<ALfloat,BUFFERSIZE> *SamplesHF;
    std::array<ALfloat,BUFFERSIZE> *SamplesLF;

    alignas(16) ALfloat ChannelMix[BUFFERSIZE];

    struct {
        BandSplitter XOver;
        ALfloat Gains[NUM_BANDS];
    } UpSampler[4];

    ALsizei NumChannels;
    ALboolean DualBand;

    DEF_NEWDEL(BFormatDec)
};

BFormatDec *bformatdec_alloc()
{ return new BFormatDec{}; }

void bformatdec_free(BFormatDec **dec)
{
    if(dec && *dec)
    {
        delete *dec;
        *dec = nullptr;
    }
}

void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei chanmap[MAX_OUTPUT_CHANNELS])
{
    static constexpr ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = {
        0,  1, 3,  4, 8,  9, 15
    };
    const ALfloat *coeff_scale = N3D2N3DScale;
    bool periphonic;
    ALfloat ratio;
    ALsizei i;

    dec->Samples.clear();
    dec->SamplesHF = nullptr;
    dec->SamplesLF = nullptr;

    dec->NumChannels = chancount;
    dec->Samples.resize(dec->NumChannels * 2);
    dec->SamplesHF = dec->Samples.data();
    dec->SamplesLF = dec->SamplesHF + dec->NumChannels;

    dec->Enabled = 0;
    for(i = 0;i < conf->NumSpeakers;i++)
        dec->Enabled |= 1 << chanmap[i];

    if(conf->CoeffScale == AmbDecScale::SN3D)
        coeff_scale = SN3D2N3DScale;
    else if(conf->CoeffScale == AmbDecScale::FuMa)
        coeff_scale = FuMa2N3DScale;

    memset(dec->UpSampler, 0, sizeof(dec->UpSampler));
    ratio = 400.0f / (ALfloat)srate;
    for(i = 0;i < 4;i++)
        bandsplit_init(&dec->UpSampler[i].XOver, ratio);
    if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
    {
        periphonic = true;

        dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H3P :
                                           (conf->ChanMask > 0xf) ? W_SCALE_2H2P : 1.0f;
        dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
        for(i = 1;i < 4;i++)
        {
            dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H3P :
                                               (conf->ChanMask > 0xf) ? XYZ_SCALE_2H2P : 1.0f;
            dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
        }
    }
    else
    {
        periphonic = false;

        dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H0P :
                                           (conf->ChanMask > 0xf) ? W_SCALE_2H0P : 1.0f;
        dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
        for(i = 1;i < 3;i++)
        {
            dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H0P :
                                               (conf->ChanMask > 0xf) ? XYZ_SCALE_2H0P : 1.0f;
            dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
        }
        dec->UpSampler[3].Gains[HF_BAND] = 0.0f;
        dec->UpSampler[3].Gains[LF_BAND] = 0.0f;
    }

    memset(&dec->Matrix, 0, sizeof(dec->Matrix));
    if(conf->FreqBands == 1)
    {
        dec->DualBand = AL_FALSE;
        for(i = 0;i < conf->NumSpeakers;i++)
        {
            ALsizei chan = chanmap[i];
            ALfloat gain;
            ALsizei j, k;

            if(!periphonic)
            {
                for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
                {
                    ALsizei l = map2DTo3D[j];
                    if(j == 0) gain = conf->HFOrderGain[0];
                    else if(j == 1) gain = conf->HFOrderGain[1];
                    else if(j == 3) gain = conf->HFOrderGain[2];
                    else if(j == 5) gain = conf->HFOrderGain[3];
                    if((conf->ChanMask&(1<<l)))
                        dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
                                                      gain;
                }
            }
            else
            {
                for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
                {
                    if(j == 0) gain = conf->HFOrderGain[0];
                    else if(j == 1) gain = conf->HFOrderGain[1];
                    else if(j == 4) gain = conf->HFOrderGain[2];
                    else if(j == 9) gain = conf->HFOrderGain[3];
                    if((conf->ChanMask&(1<<j)))
                        dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
                                                      gain;
                }
            }
        }
    }
    else
    {
        dec->DualBand = AL_TRUE;

        ratio = conf->XOverFreq / (ALfloat)srate;
        for(i = 0;i < MAX_AMBI_COEFFS;i++)
            bandsplit_init(&dec->XOver[i], ratio);

        ratio = powf(10.0f, conf->XOverRatio / 40.0f);
        for(i = 0;i < conf->NumSpeakers;i++)
        {
            ALsizei chan = chanmap[i];
            ALfloat gain;
            ALsizei j, k;

            if(!periphonic)
            {
                for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
                {
                    ALsizei l = map2DTo3D[j];
                    if(j == 0) gain = conf->HFOrderGain[0] * ratio;
                    else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
                    else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
                    else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
                    if((conf->ChanMask&(1<<l)))
                        dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
                                                             coeff_scale[l] * gain;
                }
                for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
                {
                    ALsizei l = map2DTo3D[j];
                    if(j == 0) gain = conf->LFOrderGain[0] / ratio;
                    else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
                    else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
                    else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
                    if((conf->ChanMask&(1<<l)))
                        dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
                                                             coeff_scale[l] * gain;
                }
            }
            else
            {
                for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
                {
                    if(j == 0) gain = conf->HFOrderGain[0] * ratio;
                    else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
                    else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
                    else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
                    if((conf->ChanMask&(1<<j)))
                        dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
                                                             coeff_scale[j] * gain;
                }
                for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
                {
                    if(j == 0) gain = conf->LFOrderGain[0] / ratio;
                    else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
                    else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
                    else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
                    if((conf->ChanMask&(1<<j)))
                        dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
                                                             coeff_scale[j] * gain;
                }
            }
        }
    }
}


void bformatdec_process(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
{
    ALsizei chan, i;

    if(dec->DualBand)
    {
        for(i = 0;i < dec->NumChannels;i++)
            bandsplit_process(&dec->XOver[i], dec->SamplesHF[i].data(), dec->SamplesLF[i].data(),
                              InSamples[i], SamplesToDo);

        for(chan = 0;chan < OutChannels;chan++)
        {
            if(!(dec->Enabled&(1<<chan)))
                continue;

            memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
            MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][HF_BAND],
                &reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->SamplesHF[0]),
                dec->NumChannels, 0, SamplesToDo
            );
            MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][LF_BAND],
                &reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->SamplesLF[0]),
                dec->NumChannels, 0, SamplesToDo
            );

            for(i = 0;i < SamplesToDo;i++)
                OutBuffer[chan][i] += dec->ChannelMix[i];
        }
    }
    else
    {
        for(chan = 0;chan < OutChannels;chan++)
        {
            if(!(dec->Enabled&(1<<chan)))
                continue;

            memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
            MixRowSamples(dec->ChannelMix, dec->Matrix.Single[chan], InSamples,
                          dec->NumChannels, 0, SamplesToDo);

            for(i = 0;i < SamplesToDo;i++)
                OutBuffer[chan][i] += dec->ChannelMix[i];
        }
    }
}


void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei InChannels, ALsizei SamplesToDo)
{
    ALsizei i;

    /* This up-sampler leverages the differences observed in dual-band second-
     * and third-order decoder matrices compared to first-order. For the same
     * output channel configuration, the low-frequency matrix has identical
     * coefficients in the shared input channels, while the high-frequency
     * matrix has extra scalars applied to the W channel and X/Y/Z channels.
     * Mixing the first-order content into the higher-order stream with the
     * appropriate counter-scales applied to the HF response results in the
     * subsequent higher-order decode generating the same response as a first-
     * order decode.
     */
    for(i = 0;i < InChannels;i++)
    {
        /* First, split the first-order components into low and high frequency
         * bands.
         */
        bandsplit_process(&dec->UpSampler[i].XOver,
            dec->Samples[HF_BAND].data(), dec->Samples[LF_BAND].data(),
            InSamples[i], SamplesToDo
        );

        /* Now write each band to the output. */
        MixRowSamples(OutBuffer[i], dec->UpSampler[i].Gains,
            &reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(dec->Samples[0]),
            NUM_BANDS, 0, SamplesToDo
        );
    }
}


struct AmbiUpsampler {
    alignas(16) ALfloat Samples[NUM_BANDS][BUFFERSIZE];

    BandSplitter XOver[4];

    ALfloat Gains[4][MAX_OUTPUT_CHANNELS][NUM_BANDS];

    DEF_NEWDEL(AmbiUpsampler)
};

AmbiUpsampler *ambiup_alloc()
{ return new AmbiUpsampler{}; }

void ambiup_free(struct AmbiUpsampler **ambiup)
{
    if(ambiup)
    {
        delete *ambiup;
        *ambiup = nullptr;
    }
}

void ambiup_reset(struct AmbiUpsampler *ambiup, const ALCdevice *device, ALfloat w_scale, ALfloat xyz_scale)
{
    ALfloat ratio;
    ALsizei i;

    ratio = 400.0f / (ALfloat)device->Frequency;
    for(i = 0;i < 4;i++)
        bandsplit_init(&ambiup->XOver[i], ratio);

    memset(ambiup->Gains, 0, sizeof(ambiup->Gains));
    if(device->Dry.CoeffCount > 0)
    {
        ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
        ALsizei j;
        size_t k;

        for(k = 0;k < COUNTOF(Ambi3DPoints);k++)
        {
            ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f };
            CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
            ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
        }

        /* Combine the matrices that do the in->virt and virt->out conversions
         * so we get a single in->out conversion. NOTE: the Encoder matrix
         * (encgains) and output are transposed, so the input channels line up
         * with the rows and the output channels line up with the columns.
         */
        for(i = 0;i < 4;i++)
        {
            for(j = 0;j < device->Dry.NumChannels;j++)
            {
                ALdouble gain = 0.0;
                for(k = 0;k < COUNTOF(Ambi3DDecoder);k++)
                    gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j];
                ambiup->Gains[i][j][HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
                ambiup->Gains[i][j][LF_BAND] = (ALfloat)gain;
            }
        }
    }
    else
    {
        for(i = 0;i < 4;i++)
        {
            ALsizei index = GetChannelForACN(device->Dry, i);
            if(index != INVALID_UPSAMPLE_INDEX)
            {
                ALfloat scale = device->Dry.Ambi.Map[index].Scale;
                ambiup->Gains[i][index][HF_BAND] = scale * ((i==0) ? w_scale : xyz_scale);
                ambiup->Gains[i][index][LF_BAND] = scale;
            }
        }
    }
}

void ambiup_process(struct AmbiUpsampler *ambiup, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
{
    ALsizei i, j;

    for(i = 0;i < 4;i++)
    {
        bandsplit_process(&ambiup->XOver[i],
            ambiup->Samples[HF_BAND], ambiup->Samples[LF_BAND],
            InSamples[i], SamplesToDo
        );

        for(j = 0;j < OutChannels;j++)
            MixRowSamples(OutBuffer[j], ambiup->Gains[i][j],
                ambiup->Samples, NUM_BANDS, 0, SamplesToDo
            );
    }
}