aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/bformatdec.cpp
blob: 563282a7e7a8919092ef0478566dee14066f9dec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

#include "config.h"

#include <cmath>
#include <array>
#include <vector>
#include <numeric>
#include <algorithm>
#include <functional>

#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"

#include "threads.h"
#include "almalloc.h"


namespace {

using namespace std::placeholders;


constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_ORDER+1] = {
    1.00000000e+00f, 1.00000000e+00f
};
constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_ORDER+1] = {
    7.45355990e-01f, 1.00000000e+00f
};
constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_ORDER+1] = {
    5.89792205e-01f, 8.79693856e-01f
};

inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_ORDER+1]
{
    if(order >= 3) return Ambi3DDecoderHFScale3O;
    if(order == 2) return Ambi3DDecoderHFScale2O;
    return Ambi3DDecoderHFScale;
}

inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
{
    if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa;
    if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D;
    return AmbiScale::FromN3D;
}

} // namespace


BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const ALsizei inchans,
    const ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
    mDualBand = allow_2band && (conf->FreqBands == 2);
    if(!mDualBand)
        mSamples.resize(2);
    else
    {
        ASSUME(inchans > 0);
        mSamples.resize(inchans * 2);
        mSamplesHF = mSamples.data();
        mSamplesLF = mSamplesHF + inchans;
    }
    mNumChannels = inchans;

    mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u,
        [](ALuint mask, const ALsizei &chan) noexcept -> ALuint
        { return mask | (1 << chan); }
    );

    const ALfloat xover_norm{conf->XOverFreq / static_cast<float>(srate)};

    const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0};
    const std::array<float,MAX_AMBI_CHANNELS> &coeff_scale = GetAmbiScales(conf->CoeffScale);
    const size_t coeff_count{periphonic ? MAX_AMBI_CHANNELS : MAX_AMBI2D_CHANNELS};

    if(!mDualBand)
    {
        for(size_t i{0u};i < conf->Speakers.size();i++)
        {
            ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanmap[i]];
            for(size_t j{0},k{0};j < coeff_count;j++)
            {
                const size_t l{periphonic ? j : AmbiIndex::From2D[j]};
                if(!(conf->ChanMask&(1u<<l))) continue;
                mtx[j] = conf->HFMatrix[i][k] / coeff_scale[l] *
                    ((l>=9) ? conf->HFOrderGain[3] :
                    (l>=4) ? conf->HFOrderGain[2] :
                    (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]);
                ++k;
            }
        }
    }
    else
    {
        mXOver[0].init(xover_norm);
        std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);

        const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
        for(size_t i{0u};i < conf->Speakers.size();i++)
        {
            ALfloat (&mtx)[sNumBands][MAX_AMBI_CHANNELS] = mMatrix.Dual[chanmap[i]];
            for(size_t j{0},k{0};j < coeff_count;j++)
            {
                const size_t l{periphonic ? j : AmbiIndex::From2D[j]};
                if(!(conf->ChanMask&(1u<<l))) continue;
                mtx[sHFBand][j] = conf->HFMatrix[i][k] / coeff_scale[l] *
                    ((l>=9) ? conf->HFOrderGain[3] :
                    (l>=4) ? conf->HFOrderGain[2] :
                    (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio;
                mtx[sLFBand][j] = conf->LFMatrix[i][k] / coeff_scale[l] *
                    ((l>=9) ? conf->LFOrderGain[3] :
                    (l>=4) ? conf->LFOrderGain[2] :
                    (l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio;
                ++k;
            }
        }
    }
}

BFormatDec::BFormatDec(const ALsizei inchans, const ALsizei chancount,
    const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS],
    const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
    mSamples.resize(2);
    mNumChannels = inchans;

    ASSUME(chancount > 0);
    mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u,
        [](ALuint mask, const ALsizei &chan) noexcept -> ALuint
        { return mask | (1 << chan); }
    );

    const ChannelDec *incoeffs{chancoeffs};
    auto set_coeffs = [this,inchans,&incoeffs](const ALsizei chanidx) noexcept -> void
    {
        ASSUME(chanidx >= 0);
        ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanidx];
        const ALfloat (&coeffs)[MAX_AMBI_CHANNELS] = *(incoeffs++);

        ASSUME(inchans > 0);
        std::copy_n(std::begin(coeffs), inchans, std::begin(mtx));
    };
    std::for_each(chanmap, chanmap+chancount, set_coeffs);
}


void BFormatDec::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
    ASSUME(OutChannels > 0);
    ASSUME(mNumChannels > 0);

    if(mDualBand)
    {
        for(ALsizei i{0};i < mNumChannels;i++)
            mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i],
                              SamplesToDo);

        for(ALsizei chan{0};chan < OutChannels;chan++)
        {
            if(UNLIKELY(!(mEnabled&(1<<chan))))
                continue;

            MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][sHFBand],
                &reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesHF[0]),
                mNumChannels, 0, SamplesToDo);
            MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][sLFBand],
                &reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesLF[0]),
                mNumChannels, 0, SamplesToDo);
        }
    }
    else
    {
        for(ALsizei chan{0};chan < OutChannels;chan++)
        {
            if(UNLIKELY(!(mEnabled&(1<<chan))))
                continue;

            MixRowSamples(OutBuffer[chan], mMatrix.Single[chan], InSamples,
                          mNumChannels, 0, SamplesToDo);
        }
    }
}


std::array<ALfloat,MAX_AMBI_ORDER+1> BFormatDec::GetHFOrderScales(const ALsizei in_order, const ALsizei out_order) noexcept
{
    std::array<ALfloat,MAX_AMBI_ORDER+1> ret{};

    assert(out_order >= in_order);
    ASSUME(out_order >= in_order);

    const ALfloat (&target)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order);
    const ALfloat (&input)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(in_order);

    for(ALsizei i{0};i < in_order+1;++i)
        ret[i] = input[i] / target[i];

    return ret;
}