1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
#include "config.h"
#include "converter.h"
#include "mixer_defs.h"
SampleConverter *CreateSampleConverter(enum DevFmtType srcType, enum DevFmtType dstType, ALsizei numchans, ALsizei srcRate, ALsizei dstRate)
{
SampleConverter *converter;
if(numchans <= 0 || srcRate <= 0 || dstRate <= 0)
return NULL;
converter = al_calloc(16, offsetof(SampleConverter, Chan[numchans]));
converter->mSrcType = srcType;
converter->mDstType = dstType;
converter->mNumChannels = numchans;
converter->mSrcTypeSize = BytesFromDevFmt(srcType);
converter->mDstTypeSize = BytesFromDevFmt(dstType);
converter->mSrcPrepCount = 0;
converter->mFracOffset = 0;
converter->mIncrement = (ALsizei)clampu64((ALuint64)srcRate*FRACTIONONE/dstRate,
1, MAX_PITCH*FRACTIONONE);
if(converter->mIncrement == FRACTIONONE)
converter->mResample = Resample_copy32_C;
else
{
/* TODO: Allow other resamplers. */
converter->mResample = SelectResampler(LinearResampler);
}
return converter;
}
void DestroySampleConverter(SampleConverter **converter)
{
if(converter)
{
al_free(*converter);
*converter = NULL;
}
}
static inline ALfloat Sample_ALbyte(ALbyte val)
{ return val * (1.0f/128.0f); }
static inline ALfloat Sample_ALubyte(ALubyte val)
{ return Sample_ALbyte((ALint)val - 128); }
static inline ALfloat Sample_ALshort(ALshort val)
{ return val * (1.0f/32768.0f); }
static inline ALfloat Sample_ALushort(ALushort val)
{ return Sample_ALshort((ALint)val - 32768); }
static inline ALfloat Sample_ALint(ALint val)
{ return (val>>7) * (1.0f/16777216.0f); }
static inline ALfloat Sample_ALuint(ALuint val)
{ return ((ALint)(val>>7) - 16777216) * (1.0f/16777216.0f); }
static inline ALfloat Sample_ALfloat(ALfloat val)
{ return val; }
#define DECL_TEMPLATE(T) \
static inline void Load_##T(ALfloat *dst, const T *src, ALint srcstep, ALsizei samples)\
{ \
ALsizei i; \
for(i = 0;i < samples;i++) \
dst[i] = Sample_##T(src[i*srcstep]); \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
static void LoadSamples(ALfloat *dst, const ALvoid *src, ALint srcstep, enum DevFmtType srctype, ALsizei samples)
{
switch(srctype)
{
case DevFmtByte:
Load_ALbyte(dst, src, srcstep, samples);
break;
case DevFmtUByte:
Load_ALubyte(dst, src, srcstep, samples);
break;
case DevFmtShort:
Load_ALshort(dst, src, srcstep, samples);
break;
case DevFmtUShort:
Load_ALushort(dst, src, srcstep, samples);
break;
case DevFmtInt:
Load_ALint(dst, src, srcstep, samples);
break;
case DevFmtUInt:
Load_ALuint(dst, src, srcstep, samples);
break;
case DevFmtFloat:
Load_ALfloat(dst, src, srcstep, samples);
break;
}
}
static inline ALbyte ALbyte_Sample(ALfloat val)
{ return (ALbyte)clampf(val*128.0f, -128.0f, 127.0f); }
static inline ALubyte ALubyte_Sample(ALfloat val)
{ return ALbyte_Sample(val)+128; }
static inline ALshort ALshort_Sample(ALfloat val)
{ return (ALshort)clampf(val*32768.0f, -32768.0f, 32767.0f); }
static inline ALushort ALushort_Sample(ALfloat val)
{ return ALshort_Sample(val)+32768; }
static inline ALint ALint_Sample(ALfloat val)
{ return (ALint)clampf(val*16777216.0f, -16777216.0f, 16777215.0f) << 7; }
static inline ALuint ALuint_Sample(ALfloat val)
{ return ALint_Sample(val)+INT_MAX+1; }
static inline ALfloat ALfloat_Sample(ALfloat val)
{ return val; }
#define DECL_TEMPLATE(T) \
static inline void Store_##T(T *dst, const ALfloat *src, ALint dststep, ALsizei samples)\
{ \
ALsizei i; \
for(i = 0;i < samples;i++) \
dst[i*dststep] = T##_Sample(src[i]); \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
static void StoreSamples(ALvoid *dst, const ALfloat *src, ALint dststep, enum DevFmtType dsttype, ALsizei samples)
{
switch(dsttype)
{
case DevFmtByte:
Store_ALbyte(dst, src, dststep, samples);
break;
case DevFmtUByte:
Store_ALubyte(dst, src, dststep, samples);
break;
case DevFmtShort:
Store_ALshort(dst, src, dststep, samples);
break;
case DevFmtUShort:
Store_ALushort(dst, src, dststep, samples);
break;
case DevFmtInt:
Store_ALint(dst, src, dststep, samples);
break;
case DevFmtUInt:
Store_ALuint(dst, src, dststep, samples);
break;
case DevFmtFloat:
Store_ALfloat(dst, src, dststep, samples);
break;
}
}
ALsizei SampleConverterAvailableOut(SampleConverter *converter, ALsizei srcframes)
{
ALint prepcount = converter->mSrcPrepCount;
ALsizei increment = converter->mIncrement;
ALsizei DataPosFrac = converter->mFracOffset;
ALuint64 DataSize64;
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= srcframes)
return 0;
srcframes += prepcount;
prepcount = 0;
}
if(prepcount < MAX_POST_SAMPLES+MAX_PRE_SAMPLES &&
MAX_POST_SAMPLES+MAX_PRE_SAMPLES-prepcount >= srcframes)
{
/* Not enough input samples to generate an output sample. */
return 0;
}
DataSize64 = prepcount;
DataSize64 += srcframes;
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
/* If we have a full prep, we can generate at least one sample. */
return (ALsizei)clampu64(DataSize64/increment, 1, INT_MAX);
}
ALsizei SampleConverterInput(SampleConverter *converter, const ALvoid **src, ALsizei *srcframes, ALvoid *dst, ALsizei dstframes)
{
const ALsizei SrcFrameSize = converter->mNumChannels * converter->mSrcTypeSize;
const ALsizei DstFrameSize = converter->mNumChannels * converter->mDstTypeSize;
const ALsizei increment = converter->mIncrement;
ALsizei pos = 0;
while(pos < dstframes)
{
ALfloat *restrict SrcData = ASSUME_ALIGNED(converter->mSrcSamples, 16);
ALfloat *restrict DstData = ASSUME_ALIGNED(converter->mDstSamples, 16);
ALint prepcount = converter->mSrcPrepCount;
ALsizei DataPosFrac = converter->mFracOffset;
ALuint64 DataSize64;
ALsizei DstSize;
ALint toread;
ALsizei chan;
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= *srcframes)
{
converter->mSrcPrepCount = prepcount + *srcframes;
*srcframes = 0;
break;
}
*src = (const ALbyte*)*src + SrcFrameSize*-prepcount;
*srcframes += prepcount;
prepcount = 0;
}
toread = mini(*srcframes, BUFFERSIZE-(MAX_POST_SAMPLES+MAX_PRE_SAMPLES));
if(prepcount < MAX_POST_SAMPLES+MAX_PRE_SAMPLES &&
MAX_POST_SAMPLES+MAX_PRE_SAMPLES-prepcount >= toread)
{
/* Not enough input samples to generate an output sample. Store
* what we're given for later.
*/
for(chan = 0;chan < converter->mNumChannels;chan++)
LoadSamples(&converter->Chan[chan].mPrevSamples[prepcount],
(const ALbyte*)src + converter->mSrcTypeSize*chan,
converter->mNumChannels, converter->mSrcType, toread
);
converter->mSrcPrepCount = prepcount + toread;
*srcframes = 0;
break;
}
DataSize64 = prepcount;
DataSize64 += toread;
DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
/* If we have a full prep, we can generate at least one sample. */
DstSize = (ALsizei)clampu64(DataSize64/increment, 1, BUFFERSIZE);
DstSize = mini(DstSize, dstframes-pos);
for(chan = 0;chan < converter->mNumChannels;chan++)
{
const ALbyte *SrcSamples = (const ALbyte*)*src + converter->mSrcTypeSize*chan;
ALbyte *DstSamples = (ALbyte*)dst + converter->mSrcTypeSize*chan;
const ALfloat *ResampledData;
ALsizei SrcDataEnd;
/* Load the previous samples into the source data first, then the
* new samples from the input buffer.
*/
memcpy(SrcData, converter->Chan[chan].mPrevSamples,
prepcount*sizeof(ALfloat));
LoadSamples(SrcData + prepcount, SrcSamples,
converter->mNumChannels, converter->mSrcType, toread
);
/* Store as many prep samples for next time as possible, given the
* number of output samples being generated.
*/
SrcDataEnd = (DataPosFrac + increment*DstSize)>>FRACTIONBITS;
if(SrcDataEnd >= prepcount+toread)
memset(converter->Chan[chan].mPrevSamples, 0,
sizeof(converter->Chan[chan].mPrevSamples));
else
{
size_t len = mini(MAX_PRE_SAMPLES+MAX_POST_SAMPLES, prepcount+toread-SrcDataEnd);
memcpy(converter->Chan[chan].mPrevSamples, &SrcData[SrcDataEnd],
len*sizeof(ALfloat));
memset(converter->Chan[chan].mPrevSamples+len, 0,
sizeof(converter->Chan[chan].mPrevSamples) - len*sizeof(ALfloat));
}
/* Now resample, and store the result in the output buffer. */
ResampledData = converter->mResample(NULL,
SrcData+MAX_PRE_SAMPLES, DataPosFrac, increment,
DstData, DstSize
);
StoreSamples(DstSamples, ResampledData, converter->mNumChannels,
converter->mDstType, DstSize);
}
/* Update the number of prep samples still available, as well as the
* fractional offset.
*/
DataPosFrac += increment*DstSize;
converter->mSrcPrepCount = mini(MAX_PRE_SAMPLES+MAX_POST_SAMPLES,
prepcount+toread-(DataPosFrac>>FRACTIONBITS));
converter->mFracOffset = DataPosFrac & FRACTIONMASK;
/* Update the src and dst pointers in case there's still more to do. */
*src = (const ALbyte*)*src + SrcFrameSize*(DataPosFrac>>FRACTIONBITS);
*srcframes -= mini(*srcframes, (DataPosFrac>>FRACTIONBITS));
dst = (ALbyte*)dst + DstFrameSize*DstSize;
pos += DstSize;
}
return pos;
}
ChannelConverter *CreateChannelConverter(enum DevFmtType srcType, enum DevFmtChannels srcChans, enum DevFmtChannels dstChans)
{
ChannelConverter *converter;
if(srcChans != dstChans && !((srcChans == DevFmtMono && dstChans == DevFmtStereo) ||
(srcChans == DevFmtStereo && dstChans == DevFmtMono)))
return NULL;
converter = al_calloc(DEF_ALIGN, sizeof(*converter));
converter->mSrcType = srcType;
converter->mSrcChans = srcChans;
converter->mDstChans = dstChans;
return converter;
}
void DestroyChannelConverter(ChannelConverter **converter)
{
if(converter)
{
al_free(*converter);
*converter = NULL;
}
}
#define DECL_TEMPLATE(T) \
static void Mono2Stereo##T(ALfloat *restrict dst, const T *src, ALsizei frames)\
{ \
ALsizei i; \
for(i = 0;i < frames;i++) \
dst[i*2 + 1] = dst[i*2 + 0] = Sample_##T(src[i]) * 0.707106781187f; \
} \
\
static void Stereo2Mono##T(ALfloat *restrict dst, const T *src, ALsizei frames)\
{ \
ALsizei i; \
for(i = 0;i < frames;i++) \
dst[i] = (Sample_##T(src[i*2 + 0])+Sample_##T(src[i*2 + 1])) * \
0.707106781187f; \
}
DECL_TEMPLATE(ALbyte)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALfloat)
#undef DECL_TEMPLATE
void ChannelConverterInput(ChannelConverter *converter, const ALvoid *src, ALfloat *dst, ALsizei frames)
{
if(converter->mSrcChans == converter->mDstChans)
{
LoadSamples(dst, src, 1, converter->mSrcType,
frames*ChannelsFromDevFmt(converter->mSrcChans, 0));
return;
}
if(converter->mSrcChans == DevFmtStereo && converter->mDstChans == DevFmtMono)
{
switch(converter->mSrcType)
{
case DevFmtByte:
Stereo2MonoALbyte(dst, src, frames);
break;
case DevFmtUByte:
Stereo2MonoALubyte(dst, src, frames);
break;
case DevFmtShort:
Stereo2MonoALshort(dst, src, frames);
break;
case DevFmtUShort:
Stereo2MonoALushort(dst, src, frames);
break;
case DevFmtInt:
Stereo2MonoALint(dst, src, frames);
break;
case DevFmtUInt:
Stereo2MonoALuint(dst, src, frames);
break;
case DevFmtFloat:
Stereo2MonoALfloat(dst, src, frames);
break;
}
}
else /*if(converter->mSrcChans == DevFmtMono && converter->mDstChans == DevFmtStereo)*/
{
switch(converter->mSrcType)
{
case DevFmtByte:
Mono2StereoALbyte(dst, src, frames);
break;
case DevFmtUByte:
Mono2StereoALubyte(dst, src, frames);
break;
case DevFmtShort:
Mono2StereoALshort(dst, src, frames);
break;
case DevFmtUShort:
Mono2StereoALushort(dst, src, frames);
break;
case DevFmtInt:
Mono2StereoALint(dst, src, frames);
break;
case DevFmtUInt:
Mono2StereoALuint(dst, src, frames);
break;
case DevFmtFloat:
Mono2StereoALfloat(dst, src, frames);
break;
}
}
}
|