1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
#include "config.h"
#include "converter.h"
#include <algorithm>
#include "fpu_modes.h"
#include "mixer/defs.h"
namespace {
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
* chokes on that given the inline specializations.
*/
template<DevFmtType T>
inline ALfloat LoadSample(typename DevFmtTypeTraits<T>::Type val);
template<> inline ALfloat LoadSample<DevFmtByte>(DevFmtTypeTraits<DevFmtByte>::Type val)
{ return val * (1.0f/128.0f); }
template<> inline ALfloat LoadSample<DevFmtShort>(DevFmtTypeTraits<DevFmtShort>::Type val)
{ return val * (1.0f/32768.0f); }
template<> inline ALfloat LoadSample<DevFmtInt>(DevFmtTypeTraits<DevFmtInt>::Type val)
{ return (val>>7) * (1.0f/16777216.0f); }
template<> inline ALfloat LoadSample<DevFmtFloat>(DevFmtTypeTraits<DevFmtFloat>::Type val)
{ return val; }
template<> inline ALfloat LoadSample<DevFmtUByte>(DevFmtTypeTraits<DevFmtUByte>::Type val)
{ return LoadSample<DevFmtByte>(val - 128); }
template<> inline ALfloat LoadSample<DevFmtUShort>(DevFmtTypeTraits<DevFmtUShort>::Type val)
{ return LoadSample<DevFmtByte>(val - 32768); }
template<> inline ALfloat LoadSample<DevFmtUInt>(DevFmtTypeTraits<DevFmtUInt>::Type val)
{ return LoadSample<DevFmtByte>(val - 2147483648u); }
template<DevFmtType T>
inline void LoadSampleArray(ALfloat *RESTRICT dst, const void *src, ALint srcstep, ALsizei samples)
{
using SampleType = typename DevFmtTypeTraits<T>::Type;
const SampleType *ssrc = static_cast<const SampleType*>(src);
for(ALsizei i{0};i < samples;i++)
dst[i] = LoadSample<T>(ssrc[i*srcstep]);
}
void LoadSamples(ALfloat *dst, const ALvoid *src, ALint srcstep, DevFmtType srctype, ALsizei samples)
{
#define HANDLE_FMT(T) \
case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(DevFmtByte);
HANDLE_FMT(DevFmtUByte);
HANDLE_FMT(DevFmtShort);
HANDLE_FMT(DevFmtUShort);
HANDLE_FMT(DevFmtInt);
HANDLE_FMT(DevFmtUInt);
HANDLE_FMT(DevFmtFloat);
}
#undef HANDLE_FMT
}
template<DevFmtType T>
inline typename DevFmtTypeTraits<T>::Type StoreSample(ALfloat);
template<> inline ALfloat StoreSample<DevFmtFloat>(ALfloat val)
{ return val; }
template<> inline ALint StoreSample<DevFmtInt>(ALfloat val)
{ return fastf2i(clampf(val*16777216.0f, -16777216.0f, 16777215.0f))<<7; }
template<> inline ALshort StoreSample<DevFmtShort>(ALfloat val)
{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
template<> inline ALbyte StoreSample<DevFmtByte>(ALfloat val)
{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
/* Define unsigned output variations. */
template<> inline ALuint StoreSample<DevFmtUInt>(ALfloat val)
{ return StoreSample<DevFmtInt>(val) + 2147483648u; }
template<> inline ALushort StoreSample<DevFmtUShort>(ALfloat val)
{ return StoreSample<DevFmtShort>(val) + 32768; }
template<> inline ALubyte StoreSample<DevFmtUByte>(ALfloat val)
{ return StoreSample<DevFmtByte>(val) + 128; }
template<DevFmtType T>
inline void StoreSampleArray(void *dst, const ALfloat *RESTRICT src, ALint dststep,
ALsizei samples)
{
using SampleType = typename DevFmtTypeTraits<T>::Type;
SampleType *sdst = static_cast<SampleType*>(dst);
for(ALsizei i{0};i < samples;i++)
sdst[i*dststep] = StoreSample<T>(src[i]);
}
void StoreSamples(ALvoid *dst, const ALfloat *src, ALint dststep, DevFmtType dsttype, ALsizei samples)
{
#define HANDLE_FMT(T) \
case T: StoreSampleArray<T>(dst, src, dststep, samples); break
switch(dsttype)
{
HANDLE_FMT(DevFmtByte);
HANDLE_FMT(DevFmtUByte);
HANDLE_FMT(DevFmtShort);
HANDLE_FMT(DevFmtUShort);
HANDLE_FMT(DevFmtInt);
HANDLE_FMT(DevFmtUInt);
HANDLE_FMT(DevFmtFloat);
}
#undef HANDLE_FMT
}
template<DevFmtType T>
void Mono2Stereo(ALfloat *RESTRICT dst, const void *src, ALsizei frames)
{
using SampleType = typename DevFmtTypeTraits<T>::Type;
const SampleType *ssrc = static_cast<const SampleType*>(src);
for(ALsizei i{0};i < frames;i++)
dst[i*2 + 1] = dst[i*2 + 0] = LoadSample<T>(ssrc[i]) * 0.707106781187f;
}
template<DevFmtType T>
void Stereo2Mono(ALfloat *RESTRICT dst, const void *src, ALsizei frames)
{
using SampleType = typename DevFmtTypeTraits<T>::Type;
const SampleType *ssrc = static_cast<const SampleType*>(src);
for(ALsizei i{0};i < frames;i++)
dst[i] = (LoadSample<T>(ssrc[i*2 + 0])+LoadSample<T>(ssrc[i*2 + 1])) *
0.707106781187f;
}
} // namespace
SampleConverterPtr CreateSampleConverter(DevFmtType srcType, DevFmtType dstType, ALsizei numchans,
ALsizei srcRate, ALsizei dstRate, Resampler resampler)
{
if(numchans <= 0 || srcRate <= 0 || dstRate <= 0)
return nullptr;
const size_t alloc_size{FAM_SIZE(SampleConverter, Chan, numchans)};
SampleConverterPtr converter{new (al_calloc(16, alloc_size)) SampleConverter{}};
converter->mSrcType = srcType;
converter->mDstType = dstType;
converter->mNumChannels = numchans;
converter->mSrcTypeSize = BytesFromDevFmt(srcType);
converter->mDstTypeSize = BytesFromDevFmt(dstType);
converter->mSrcPrepCount = 0;
converter->mFracOffset = 0;
/* Have to set the mixer FPU mode since that's what the resampler code expects. */
FPUCtl mixer_mode{};
auto step = static_cast<ALsizei>(
mind((ALdouble)srcRate/dstRate*FRACTIONONE + 0.5, MAX_PITCH*FRACTIONONE));
converter->mIncrement = maxi(step, 1);
if(converter->mIncrement == FRACTIONONE)
converter->mResample = Resample_copy_C;
else
{
if(resampler == BSinc24Resampler)
BsincPrepare(converter->mIncrement, &converter->mState.bsinc, &bsinc24);
else if(resampler == BSinc12Resampler)
BsincPrepare(converter->mIncrement, &converter->mState.bsinc, &bsinc12);
converter->mResample = SelectResampler(resampler);
}
return converter;
}
ALsizei SampleConverter::availableOut(ALsizei srcframes) const
{
ALint prepcount{mSrcPrepCount};
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= srcframes)
return 0;
srcframes += prepcount;
prepcount = 0;
}
if(srcframes < 1)
{
/* No output samples if there's no input samples. */
return 0;
}
if(prepcount < MAX_RESAMPLE_PADDING*2 &&
MAX_RESAMPLE_PADDING*2 - prepcount >= srcframes)
{
/* Not enough input samples to generate an output sample. */
return 0;
}
auto DataSize64 = static_cast<ALuint64>(prepcount);
DataSize64 += srcframes;
DataSize64 -= MAX_RESAMPLE_PADDING*2;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= mFracOffset;
/* If we have a full prep, we can generate at least one sample. */
return (ALsizei)clampu64((DataSize64 + mIncrement-1)/mIncrement, 1, BUFFERSIZE);
}
ALsizei SampleConverter::convert(const ALvoid **src, ALsizei *srcframes, ALvoid *dst, ALsizei dstframes)
{
const ALsizei SrcFrameSize{mNumChannels * mSrcTypeSize};
const ALsizei DstFrameSize{mNumChannels * mDstTypeSize};
const ALsizei increment{mIncrement};
auto SamplesIn = static_cast<const ALbyte*>(*src);
ALsizei NumSrcSamples{*srcframes};
FPUCtl mixer_mode{};
ALsizei pos{0};
while(pos < dstframes && NumSrcSamples > 0)
{
ALint prepcount{mSrcPrepCount};
if(prepcount < 0)
{
/* Negative prepcount means we need to skip that many input samples. */
if(-prepcount >= NumSrcSamples)
{
mSrcPrepCount = prepcount + NumSrcSamples;
NumSrcSamples = 0;
break;
}
SamplesIn += SrcFrameSize*-prepcount;
NumSrcSamples += prepcount;
mSrcPrepCount = 0;
continue;
}
ALint toread{mini(NumSrcSamples, BUFFERSIZE - MAX_RESAMPLE_PADDING*2)};
if(prepcount < MAX_RESAMPLE_PADDING*2 &&
MAX_RESAMPLE_PADDING*2 - prepcount >= toread)
{
/* Not enough input samples to generate an output sample. Store
* what we're given for later.
*/
for(ALsizei chan{0};chan < mNumChannels;chan++)
LoadSamples(&Chan[chan].mPrevSamples[prepcount], SamplesIn + mSrcTypeSize*chan,
mNumChannels, mSrcType, toread);
mSrcPrepCount = prepcount + toread;
NumSrcSamples = 0;
break;
}
ALfloat *RESTRICT SrcData{mSrcSamples};
ALfloat *RESTRICT DstData{mDstSamples};
ALsizei DataPosFrac{mFracOffset};
auto DataSize64 = static_cast<ALuint64>(prepcount);
DataSize64 += toread;
DataSize64 -= MAX_RESAMPLE_PADDING*2;
DataSize64 <<= FRACTIONBITS;
DataSize64 -= DataPosFrac;
/* If we have a full prep, we can generate at least one sample. */
auto DstSize = static_cast<ALsizei>(
clampu64((DataSize64 + increment-1)/increment, 1, BUFFERSIZE));
DstSize = mini(DstSize, dstframes-pos);
for(ALsizei chan{0};chan < mNumChannels;chan++)
{
const ALbyte *SrcSamples = SamplesIn + mSrcTypeSize*chan;
ALbyte *DstSamples = (ALbyte*)dst + mDstTypeSize*chan;
/* Load the previous samples into the source data first, then the
* new samples from the input buffer.
*/
std::copy_n(Chan[chan].mPrevSamples, prepcount, SrcData);
LoadSamples(SrcData + prepcount, SrcSamples, mNumChannels, mSrcType, toread);
/* Store as many prep samples for next time as possible, given the
* number of output samples being generated.
*/
ALsizei SrcDataEnd{(DstSize*increment + DataPosFrac)>>FRACTIONBITS};
if(SrcDataEnd >= prepcount+toread)
std::fill(std::begin(Chan[chan].mPrevSamples),
std::end(Chan[chan].mPrevSamples), 0.0f);
else
{
size_t len = mini(MAX_RESAMPLE_PADDING*2, prepcount+toread-SrcDataEnd);
std::copy_n(SrcData+SrcDataEnd, len, Chan[chan].mPrevSamples);
std::fill(std::begin(Chan[chan].mPrevSamples)+len,
std::end(Chan[chan].mPrevSamples), 0.0f);
}
/* Now resample, and store the result in the output buffer. */
const ALfloat *ResampledData{mResample(&mState, SrcData+MAX_RESAMPLE_PADDING,
DataPosFrac, increment, DstData, DstSize)};
StoreSamples(DstSamples, ResampledData, mNumChannels, mDstType, DstSize);
}
/* Update the number of prep samples still available, as well as the
* fractional offset.
*/
DataPosFrac += increment*DstSize;
mSrcPrepCount = mini(prepcount + toread - (DataPosFrac>>FRACTIONBITS),
MAX_RESAMPLE_PADDING*2);
mFracOffset = DataPosFrac & FRACTIONMASK;
/* Update the src and dst pointers in case there's still more to do. */
SamplesIn += SrcFrameSize*(DataPosFrac>>FRACTIONBITS);
NumSrcSamples -= mini(NumSrcSamples, (DataPosFrac>>FRACTIONBITS));
dst = (ALbyte*)dst + DstFrameSize*DstSize;
pos += DstSize;
}
*src = SamplesIn;
*srcframes = NumSrcSamples;
return pos;
}
ChannelConverterPtr CreateChannelConverter(DevFmtType srcType, DevFmtChannels srcChans, DevFmtChannels dstChans)
{
if(srcChans != dstChans && !((srcChans == DevFmtMono && dstChans == DevFmtStereo) ||
(srcChans == DevFmtStereo && dstChans == DevFmtMono)))
return nullptr;
return ChannelConverterPtr{new ChannelConverter{srcType, srcChans, dstChans}};
}
void ChannelConverter::convert(const ALvoid *src, ALfloat *dst, ALsizei frames) const
{
if(mSrcChans == mDstChans)
{
LoadSamples(dst, src, 1, mSrcType, frames*ChannelsFromDevFmt(mSrcChans, 0));
return;
}
if(mSrcChans == DevFmtStereo && mDstChans == DevFmtMono)
{
switch(mSrcType)
{
#define HANDLE_FMT(T) case T: Stereo2Mono<T>(dst, src, frames); break
HANDLE_FMT(DevFmtByte);
HANDLE_FMT(DevFmtUByte);
HANDLE_FMT(DevFmtShort);
HANDLE_FMT(DevFmtUShort);
HANDLE_FMT(DevFmtInt);
HANDLE_FMT(DevFmtUInt);
HANDLE_FMT(DevFmtFloat);
#undef HANDLE_FMT
}
}
else /*if(mSrcChans == DevFmtMono && mDstChans == DevFmtStereo)*/
{
switch(mSrcType)
{
#define HANDLE_FMT(T) case T: Mono2Stereo<T>(dst, src, frames); break
HANDLE_FMT(DevFmtByte);
HANDLE_FMT(DevFmtUByte);
HANDLE_FMT(DevFmtShort);
HANDLE_FMT(DevFmtUShort);
HANDLE_FMT(DevFmtInt);
HANDLE_FMT(DevFmtUInt);
HANDLE_FMT(DevFmtFloat);
#undef HANDLE_FMT
}
}
}
|